
+ÒÁËĕ×ȟ ςπρυ

!'(5.)6%23)49 /& 3#)%.#% !.$

4%#(./,/'9

&!#5,49 /& #/-054%2 3#)%.#%ȟ

%,%#42/.)#3 !.$ 4%,%#/--5.)#!4)/.3

! ./6%, $!4! !#15)3)4)/. 3934%- "!3%$

/. &!34 /04)#!, ,).+3 !.$ 5.)6%23!,

2%!$/54 "/!2$3

Ph.D. Dissertation

Author:

Mgr Grzegorz Korcyl

Supervi sor:

Prof. Dr Hab. Piotr Salabura

+ÒÁËĕ×ȟ ςπρυ

!+!$%-)! 's2.)#:/Ȥ(54.)#:!

79$:)!l).&/2-!49+)ȟ %,%+42/.)+))

4%,%+/-5.)+!#*)

./7/#:%3.9 3934%- !+7):9#*) $!.9#(

/0!249 .! 3:9"+)#(0/lD#:%.)!#(

/049#:.9#() 5.)7%23!,.9#(0l94!#(

/$#:945

Rozprawa Doktorska

Autor:

Mgr Grzegorz Korcyl

Promotor:

Prof. Dr Hab. Piotr Salabura

!#+./7,%$'-%.43

Foremost I want to thank my supervisor Prof. Piotr Salabura. His great support and

guidance allowed me to explore the field of technology in large physics experiments.

I also want to thank my foreign supervisors: Dr. Michael Traxler from GSI Darmstadt

and Prof. Wolfgang Kuehn from Justus-Liebig Universitaet in Giessen.

Being a member of HADES and PANDA Collaborations, I want to thank all the

members for giving me the opportunity to be a part of those projects and sharing

their experience with me.

I gratefully acknowledge the founding support from the Foundation of Polish

Science and from the Jagiellonian University in Cracow.

This work would not be possible without my family and friends, therefore I want to

express my gratitude for their support.

!"342!#4

Various scale measurement systems are composed of the sensors providing data

through the data acquisition system to the archiving facility. The scale of such

systems is determined by the number of sensors that require processing and can

vary from few up to hundreds of thousands. The number and the type of sensors

impose several requirements on the data acquisition system like readout frequency,

measurement precision and online analysis algorithms. The most challenging

applications are the large scale experiments in nuclear and particle physics.

This thesis presents a concept, construction and tests of a modular and scalable,

tree-structured architecture of a data acquisition system. The system is composed

out of two logical elements: endpoints which are the modules providing data and

hubs that concentrate the data streams from the endpoints and provide connectivity

with the rest of the system. Those two logical functions are realised by the base

modules called Trigger Readout Board (abbr. TRB) which feature basic

functionality: digitization of the signals, communication with other modules and

external networks, control and monitoring mechanisms. This set of functions can be

extended on the modules via a system of Add-on boards that introduce new features

and allows to adapt the platform for various applications.

The key characteristics of TRB based system are: scalable, flexible, extensible and

reconfigurable. The scalability of the platform is realized by the hub components,

which allow to create tree structures with many layers, each opening new ports for

additional endpoints, without reducing the performance of the entire system. The

TRB boards are based on FPGAs, which are reconfigurable, programmable logic

devices. This approach results in a possible use of the same hardware module for

different functions with just a change of the firmware. It also allows to introduce

new functionalities over time. Together with the Add-on system, the platform can

be relatively easily adapted to various applications and extended with new

elements.

The platform was developed inside the HADES Collaboration with significant

contribution from the author. The HADES detector was also the largest target

application and was used for extensive tests of the system. Several conducted

experiments and laboratory tests described in this thesis confirm the design and

allow to evaluate the system performance. The platform has also found application

in various other systems, one of them being the J-PET medical imaging project also

described in this thesis.

342%3:#:%.)%

3ÙÓÔÅÍÙ ÐÏÍÉÁÒÏ×Å ÒĕŀÎÅÊ ÓËÁÌÉ ÓËčÁÄÁÊä ÓÉö Ú ÃÚÕÊÎÉËĕ× ÄÏÓÔÁÒÃÚÁÊäÃÙÃÈ ÄÁÎÅ

poprzez system akwizycji danych do infrastruktury ÁÒÃÈÉ×ÉÚÕÊäÃÅÊ. Skala takich

ÓÙÓÔÅÍĕ× ÊÅÓÔ ÏËÒÅĢÌÁÎÁ ÐÒÚÅÚ ÌÉÃÚÂö ÃÚÕÊÎÉËĕ× ×ÙÍÁÇÁÊäÃÙÃÈ ÐÒÏÃÅÓÏ×ÁÎÉÁ É

ÍÏŀÅ ÓÉö ×ÁÈÁç ÏÄ ËÉÌËÕ ÄÏ ËÉÌËÕÓÅÔ ÔÙÓÉöÃÙȢ Liczba É ÔÙÐ ÃÚÕÊÎÉËĕ× ÎÁËčÁÄÁÊä ÓÚÅÒÅÇ

×ÙÍÁÇÁď ÄÏÔÙÃÚäÃÙÃÈ ÓÙÓÔÅÍÕ ÁË×ÉÚÙÃÊÉ ÄÁÎÙÃÈȟ ÔÁËÉÃÈ ÊÁË ÃÚöÓÔÏÔÌÉ×ÏĢç ÏÄÃÚÙÔÕȟ

precyzja pomiaru czy algorytmy analizy w czasie rzeczywistym. Najbardziej

×ÙÍÁÇÁÊäÃÙÍ Ú ÔÅÇÏ ÐÕÎËÔÕ ×ÉÄÚÅÎÉÁ ÚÁÄÁÎÉÅÍ Óä ÅËÓÐÅÒÙÍÅÎÔÙ ÆÉÚÙÃÚÎÅ ÄÕŀÅÊ

skali.

W tej pracy zaprezentowana jest koncepcja modularnej i skalowanej architektury w

ÐÏÓÔÁÃÉ ÄÒÚÅ×Á ÓÙÓÔÅÍÕ ÁË×ÉÚÙÃÊÉ ÄÁÎÙÃÈȢ 3ÙÓÔÅÍ ÓËčÁÄÁ ÓÉö Ú Ä×ĕÃÈ ÌÏÇÉÃÚÎÙÃÈ

ÅÌÅÍÅÎÔĕ×ȡ elementy ËÏďÃÏ×ÙÃÈȟ ËÔĕÒÅ ÄÏÓÔÁÒÃÚÁÊä ÄÁÎÅ oraz ËÏÎÃÅÎÔÒÁÔÏÒĕ×ȟ

ËÔĕÒÅ ÏÄÂÉÅÒÁÊä ÓÔÒÕÍÉÅÎÉÅ ÄÁÎÙÃÈ É ÚÁÐÅ×ÎÉÁÊä ËÏÍÕÎÉËÁÃÊö Ú ÃÁčÏĢÃÉä ÓÙÓÔÅÍÕȢ 4Å

Ä×ÉÅ ÆÕÎËÃÊÏÎÁÌÎÏĢÃÉ ÌÏÇÉÃÚÎÅ Óä ÒÅÁÌÉÚÏ×ÁÎÅ ÐÒÚÅÚ ÍÏÄÕčÙ ÂÁÚÏwy Trigger

Readout Board (42"Ɋȟ ËÔĕÒÙ ÚÁÐÅ×ÎÉÁ ÐÏÄÓÔÁ×Ï×ä ÆÕÎËÃÊÏÎÁÌÎÏĢçȡ ÄÉÇÉÔÁÌÉÚÁÃÊÉ

ÓÙÇÎÁčĕ×ȟ ËÏÍÕÎÉËÁÃÊÉ Ú ÐÏÚÏÓÔÁčÙÍÉ ÍÏÄÕčÁÍÉ ÏÒÁÚ ÚÅ×ÎöÔÒÚÎÙÍÉ ÓÉÅÃÉÁÍÉ ÏÒÁÚ

mechanizmy kontrolno-ÓÔÅÒÕÊäÃÅȢ 4ÅÎ ÚÂÉĕÒ ÆÕÎËÃÊÉ ÍÏŀÅ ÚÏÓÔÁç ÐÏ×ÉöËÓÚÏÎÙ

ÐÏÐÒÚÅÚ ÓÙÓÔÅÍ ÐčÙÔ !ÄÄ-ÏÎȟ ËÔĕÒÅ ÐÏÚ×ÁÌÁÊä ×ÐÒÏ×ÁÄÚÉç ÎÏ×Å ÆÕÎËÃÊÏÎÁÌÎÏĢÃÉ É

ÐÒÚÙÓÔÏÓÏ×Áç ÐÌÁÔÆÏÒÍö ÄÏ ÒĕŀÎÅÇÏ ÒÏÄÚÁÊÕ ÚÁÓÔÏÓÏ×ÁďȢ

+ÌÕÃÚÏ×ÙÍÉ ÃÅÃÈÁÍÉ ÓÙÓÔÅÍÕ ÏÐÁÒÔÅÇÏ ÎÁ ÍÏÄÕčÁÃÈ 42" Óäȡ ÓËÁÌÏ×ÁÌÎÏĢçȟ

ÅÌÁÓÔÙÃÚÎÏĢçȟ ÒÏÚÓÚÅÒÚÁÌÎÏĢç ÏÒÁÚ ÍÏŀÌÉ×ÏĢç ÒÅËÏÎÆÉÇÕÒÁÃÊÉȢ 3ËÁÌÏ×ÁÌÎÏĢç

ÐÌÁÔÆÏÒÍÙ ÚÏÓÔÁčÁ ÏÓÉäÇÎÉöÔÁ ÐÏÐÒÚÅÚ ÚÁÓÔÏÓÏ×ÁÎÉÅ ÍÏÄÕčĕ× ËÏÎÃÅÎÔÒÁÔÏÒĕ×ȟ

ËÔĕÒÅ ÐÏÚ×ÁÌÁÊä Ô×ÏÒÚÙç ÄÒÚÅ×ÉÁÓÔÅ ÓÔÒÕËÔÕÒÙ Ú ×ÉÅÌÏÍÁ ×ÁÒÓÔ×ÁÍÉȟ Ú ËÔĕÒÙÃÈ

ËÁŀÄÁ ÏÔ×ÉÅÒÁ ÎÏ×Å ÐÏÒÔÙ ÄÌÁ ÅÌÅÍÅÎÔĕ× ËÏďÃÏ×ÙÃÈȟ ÂÅÚ ÐÏÇÁÒÓÚÁÎÉÁ ÐÁÒÁÍÅÔÒĕ×

×ÙÄÁÊÎÏĢÃÉÏ×ÙÃÈ ÓÙÓÔÅÍÕȢ 0čÙÔÙ 42" Óä ÏÐÁÒÔÅ ÎÁ ÕËčÁÄÁÃÈ &0'!ȟ ËÔĕÒÅ Óä

ÒÅËÏÎÆÉÇÕÒÏ×ÁÌÎÙÍÉȟ ÐÒÏÇÒÁÍÏ×ÁÌÎÙÍÉ ÕËčÁÄÁÍÉ ÌÏÇÉcznymi. $ÚÉöËÉ ÔÁËÉÅÍÕ

ÐÏÄÅÊĢÃÉÕȟ ÍÏŀÎÁ ÕŀÙ×Áç ÍÏÄÕčÕ ÂÁÚÏ×ÅÇÏ ÄÏ ÒÅÁÌÉÚÏ×ÁÎÉÁ ÒĕŀÎÙÃÈ ÆÕÎËÃÊÉȟ

ÊÅÄÙÎÉÅ ÐÏÐÒÚÅÚ ÚÍÉÁÎö ÏÐÒÏÇÒÁÍÏ×ÁÎÉÁ ×ÂÕÄÏ×ÁÎÅÇÏȢ 4Ï Òĕ×ÎÉÅŀ ÐÏÚ×ÁÌÁ ÎÁ

×ÐÒÏ×ÁÄÚÁÎÉÅ ÎÏ×ÙÃÈ ÆÕÎËÃÊÏÎÁÌÎÏĢÃÉ Ú ÂÉÅÇÉÅÍ ÃÚÁÓÕȢ 7 ÐÏčäÃÚÅÎÉÕ Ú ÓÙÓÔÅÍÅÍ

ÐčÙÔ !ÄÄ-oÎȟ ÔÁËÉÅ ÒÏÚ×ÉäÚÁÎÉÅ ÐÏÚÁ×ÁÌÁ ÎÁ ÓÔÏÓÕÎËÏ×Ï čÁÔ×Å ÚÁÁÄÁÐÔÏ×ÁÎÉÅ

ÐÌÁÔÆÏÒÍÙ 42" ÄÏ ÒĕŀÎÙÃÈ ÚÁÓÔÏÓÏ×ÁďȢ

0ÌÁÔÆÏÒÍÁ ÚÏÓÔÁčÁ ÒÏÚ×ÉÎÉöÔÁ ×Å×ÎäÔÒÚ +ÏÌÁÂÏÒÁÃÊÉ (!$%3 ÐÒÚÙ ÚÎÁÃÚäÃÙÍ

×ËčÁÄÚÉÅ ÁÕÔÏÒÁȢ $ÅÔÅËÔÏÒ (!$%3 ÂÙč Òĕ×ÎÉÅŀ ÄÏÃÅÌÏ×ÙÍ ÚÁÓÔÏÓÏ×ÁÎÉÅÍ ÓÙÓÔÅÍÕ

i ÚÏÓÔÁč ÕŀÙÔÙ ÄÏ ÐÒÚÅÐÒÏ×ÁÄÚÅÎÉÁ ÒÏÚÌÅÇčÙÃÈ ÔÅÓÔĕ× ÓÙÓÔÅÍÕȢ Szereg

ÐÒÚÅÐÒÏ×ÁÄÚÏÎÙÃÈ ÅËÓÐÅÒÙÍÅÎÔĕ× oraz testy laboratoryjne potwierdzaÊä projekt

ÁÒÃÈÉÔÅËÔÕÒÙ ÏÒÁÚ ÐÏÚ×ÁÌÁÊä ÎÁ Å×ÁÌÕÁÃÊö ×ÙÄÁÊÎÏĢÃÉ ÓÙÓÔÅÍÕȢ 0ÌÁÔÆÏÒÍÁ ÚÎÁÌÁÚčÁ

Òĕ×ÎÉÅŀ ÚÁÓÔÏÓÏ×ÁÎÉÅ × ×ÉÅÌÕ ÉÎÎÙÃÈ ÁÐÌÉËÁÃÊÁÃÈȢ *ÅÄÎä Ú ÎÉÃÈ ÊÅÓÔ ÐÒÏÊÅËÔ *-PET,

tomoÇÒÁÆÕ ÄÏ ÏÂÒÁÚÏ×ÁÎÉÁ ÍÅÄÙÃÚÎÅÇÏȟ ËÔĕÒÙ Òĕ×ÎÉÅŀ ÚÏÓÔÁč ÕÊöÔÙ × ÔÅÊ ÐÒÁÃÙȢ

4!",% /& #/.4%.43

1 INTRODUCTION ... 1

2 OVERVIEW OF DATA ACQUISITION SYSTEMS ... 5

2.1 DATA ACQUISITION SYSTEMS .. 8

2.1.1 Detectors .. 8

2.1.2 Front-End Electronics ... 9

2.1.3 Digitizers ... 10

2.1.4 Data Concentrators, Networking and Event Building ... 13

2.2 TRIGGER SYSTEMS AND DATA DISCRIMINATION ... 15

2.3 SLOW CONTROL ... 17

2.4 OFF-SHELF DAQ AND TRIGGER PLATFORMS ... 18

2.5 MODELS, REQUIREMENTS AND CHALLENGES... 19

2.5.1 Models ... 20

2.5.2 Requirements and Challenges .. 21

3 PROGRAMMABLE LOGIC DEVICES .. 23

3.1 FPGA DEVICE STRUCTURE .. 24

3.2 PROGRAMING LANGUAGE ɀ VHDL ... 27

3.3 DESIGN FLOW AND METHODOLOGY .. 30

3.4 COMPARISON TO CPUS AND GPUS ... 35

3.4.1 Architecture ... 35

3.4.2 Example Application - Random Number Generator ... 38

4 DATA ACQUISITION SYSTEM ARCHITECTURE BASED ON UNIVERSAL

READOUT BOARDS .. 41

4.1 SYSTEM ARCHITECTURE ... 42

4.2 COMMUNICATION PROTOCOLS ... 45

4.2.1 TrbNet .. 45

4.2.2 Gigabit Ethernet ... 47

4.3 SYSTEM COMPONENTS .. 48

4.4 TRIGGER READOUT BOARD VERSION 3 ... 51

4.4.1 Hardware ... 51

4.4.2 Firmware ... 53

4.4.3 Gigabit Ethernet Module ... 55

4.4.4 Software ... 56

4.5 GIGABIT ETHERNET MODULE.. 59

4.5.1 Network Model .. 59

4.5.2 Gigabit Ethernet Module Internal Structure .. 61

5 APPLICATIONS ... 69

5.1 HADES EXPERIMENT .. 70

5.1.1 Subsystems .. 71

5.1.2 The DAQ System Structure ... 72

5.1.3 Trigger System .. 73

5.1.4 Data Transmission and Event Building .. 75

5.1.5 Digital Signal Processing Platform... 81

5.2 J-PET SCANNER .. 87

5.2.1 Setup .. 87

5.2.2 The Readout.. 89

5.2.3 Central Controller and Online Event Building ... 90

6 SYSTEM PERFORMANCE MEASUREMENTS .. 93

6.1 LABORATORY MEASUREMENTS ... 93

6.1.1 Measurements Methodology ... 95

6.1.2 Estimations of the System Performance ... 96

6.1.3 Measurement Results.. 98

6.1.4 Conclusions .. 101

6.2 HADES DAQ SYSTEM MEASUREMENTS ... 101

6.2.1 In-Beam System Performance ... 103

6.2.2 Performance Reducing Factors ... 104

6.2.3 Conclusions .. 107

7 CONCLUSIONS AND OUTLOOK .. 109

7.1 OUTLOOK ... 110

8 REFERENCES .. 113

1

1).42/$5#4)/.

Modern, large scale measurement systems and real time data processing facilities

require the design and development of efficient platforms, which aim is to process

multiple data streams in parallel and deliver the product to a final archiving

destination. Such platforms are being widely used in the industry sectors like

automotive, aerospace, energetics and consumer electronics but also in science

fields like medical imaging and experimental physics. Taking for example the ATLAS

experiment (CERN, Switzerland) (1), commonly known as the largest detector

system ever built on Earth, it features more than one hundred million analog

channels that have to be precisely measured, in a synchronized way. The data has to

be processed, analysed in the real time and reduced by filtering the unimportant

data, treated as noise, before reaching final location.

The scale of those projects impose the development of dedicated platforms, fine-

tuned for fulfilling the very high requirements in terms of the precision, readout

speed and channel density. The commercially available standards like VME (2) or

CAMAC (3) are difficult to scale and their costs are significant. This thesis presents

a hierarchical system based on a universal base module called Trigger Readout

Board (abbr. TRB) (4) , originally designed for the High Acceptance DiElectron

Spectrometer (abbr. HADES) at GSI, Germany (5). The base module features

connectivity and data processing functionality as well as measurement mechanisms

provided by dedicated extension modules. Such high flexibility could be achieved by

the use of custom electronics equipped with Field-Programmable Gate Array (abbr.

FPGA) reconfigurable, programmable logic devices (6). The base modules can be

connected in a tree, hierarchical architecture, which provides high scalability, which

is crucial for various applications.

The intention of this work is to present a complete, modular and scalable system for

a streamlined data processing in the real time regime. The development consists of

2

many aspects, starting with definition of the system architecture, specification of the

electronic modules, together with the base module TRB, implementation of the

firmware for FPGAs, definition of custom communication protocols and data

structures, up to the implementation of the software needed to control and to

monitor the acquisition process. The system is an alternative for standardized many

ÙÅÁÒÓ ÁÇÏ ÁÒÃÈÉÔÅÃÔÕÒÅÓȟ ×ÈÉÃÈ ÉÎ ÔÏÄÁÙȭÓ ÁÐÐÌÉÃÁÔÉÏÎÓ ÐÒÅÓÅÎÔ ÌÏ× ÓÃÁÌÁÂÉÌÉÔÙ ÁÎÄ

functionality, thus not applicable for modern measurement systems, also because of

the still remaining high costs. The proposition of a high performance platform,

ÃÏÍÐÌÉÁÎÔ ×ÉÔÈ ÔÏÄÁÙȭÓ ÓÔÁÎÄÁÒÄÓ ÉÎ ÔÅÒÍÓ ÏÆ ÄÁÔÁ ÐÒÏÃÅÓÓÉÎÇ ÁÎÄ ÔÒÁÎÓÍÉÓÓÉÏÎȟ

universal and flexible enough to be applicable for a wide range of experiments and

detection systems is a response for the legacy platforms. The success of the

developed platform is proven by the significant interest in the community and the

number of various scale applications, to which the system was adapted, both in

experimental physics and medical imaging device prototypes. The author of this

thesis participated in this challenging task providing important contributions to the

design of the system architecture - implementing various elements of the system,

adapting the solutions for diverse applications and performing evaluation tests.

Some of the developed solutions were enclosed in the international patent

application (7) and published in international journals (8), (4), (9), (10).

Prior to present the system under discussion, a general introduction to Data

Acquisition Systems is conducted. The Chapter 2 opens by covering the basic

elements which are building blocks of a measurement system. It is followed by an

overview of the concept of triggering and data discrimination. Together with the

slow control system, presented in the next section, they cover the basic ingredients

of the Data Acquisition System (abbr. DAQ). The chapter is concluded with

comparison of different standard DAQ platforms commercially available and a

discussion about the challenges and requirements facing modern data acquisition

systems.

The Field Programmable Gate Arrays are devices ÏÒÉÇÉÎÁÔÉÎÇ ÔÈÅ ωπȭÓ ÂÕÔ ÎÏ×ÁÄÁÙÓ

experiencing dynamic development. This technology is widely used in modern

measurement systems, hence the entire Chapter 3 is dedicated to presentation of

the device structure and methodology of firmware development. A brief

introduction of VHDL (11), as the hardware description language used for

implementing the logic, is included as well as a section where the FPGAs are

compared to other computing platforms in order to visualize the differences in their

architectures which are essential for DAQ applications.

The body of the thesis is enclosed in Chapters 4 and 5. The first one describes in

details the proposed architecture of the data acquisition system, which is under

discussion. The focus is on the network communication and data transmission

realized by the implementation of Gigabit Ethernet Module (Section 4.5) and on the

new TRB3 platform (Section 4.4) which was the original contribution of the author

3

of this thesis. The Chapter 5 covers main applications, where the elements of the

system are used under various forms. The description of HADES experiment is a

showcase of the entire, large-scale system setup. In contrary, the J-PET application

shows how the components can be applied to smaller setups with different

requirements.

Chapter 6 encloses results of measurements of the platform performance. Both a

laboratory setup and the real applications are tested in terms of scalability issues,

data throughput and readout rate, which are the key characteristics of the system

architecture.

The work is concluded with a chapter summarizing achieved results and opening a

discussion about possible improvement of specific components and mechanisms.

4

5

2 /6%26)%7 /& $!4!
!#15)3)4)/. 3934%-3

Automation of many processes requires the use of various sensors. One of such

applications are advanced, industrial production lines. They operate autonomously

by processing feedback from devices that monitor a number of characteristics,

describing the conditions and manufacturing parameters. It is used for both: quality

assessment and real-time adjustments of production processes. Automation of the

monitoring can be found in almost all aspects of our lives: from monitoring the

condition of power plants and delivery lines through massive transportation

systems, weather, up to something very personal like miniature health monitoring

devices, that we can carry in our pockets. All those applications complete a standard

scheme that consists of sensors, measurement devices and electronics with software

that process gathered data. The sensor detects some physics phenomena and

converts it into an electrical impulse, which is then digitized by dedicated

electronics. The result is processed for extracting some interesting feature,

presenting the result in some form and archiving. The set of electronics, firmware

and software needed to process the data from the sensors is called Data Acquisition

System.

One can distinguish three levels while trying to categorize the DAQ systems. First

level, would be very heavy duty applications, like systems used in mining, petrol

facilities or transportation. They are designed to operate at very harsh conditions,

thus robustness is their key feature. Measurement precision, number of sensors and

readout frequency is relatively low. The second level is dedicated to applications

which require moderate precision and readout frequency, while keeping limited

number of input channels. The most advanced systems, like the ones used in physics

experiments, impose the highest requirements. The third level is reserved to

6

applications which operate on hundred thousand or even hundred millions of

sensors that measure with resolutions of single nanoseconds at megahertz

frequencies.

All three levels, however, share some common functions. They all need a real-time

data path from the sensors, through the digitizing device and some sort of

processing unit. In the units, algorithms used to process data are designed to extract

features from the incoming data stream and generate triggers that will have

immediate result on the operation of the system. In applications where information

loss due to high readout rate is significant, this critical path and processing time have

to be minimized. The time needed to process a given portion of data, during which

the system cannot accept any input is called the dead time.

Each of the levels presents a set of different requirements, which impose the use of

technologies developed for those dedicated applications. Heavy duty systems are

often based on Programmable Logic Controllers (abbr. PLC), which are modular

computers typically used for industrial processes. They can implement real-time

algorithms, driven by the input ports. More advanced features are presented by

systems like LabView from National Instruments. Those are complex solutions

developed for measurement and monitoring systems, instrument control and

validation systems. They are successfully used for many laboratory applications, as

small scale, off-the-shelf measurement stations. Although they present versatile

functionality, their scalability is limited and costs per channel are significant.

Requirements imposed by applications from the third category, force the

development of dedicated, custom solutions, fine-tuned for achieving the peak

performance.

A particular example and undoubtedly the most advanced in terms of technology

and demands are systems used in particle physics experiments. Although each

experiment faces a different aspect, the main structure of their construction is

common. Usually experiments are located at particle accelerators which boost

projectiles to a specified energy and then hit either stationary target or other beam.

The reaction products are measured by a dedicated detector system. The response

of the detectors is then registered by specialized readout electronics (analog and

digital) and transmitted to some storage devices for further analysis. Properly

designed data acquisition system working together with the trigger system (a

system which makes a decision to store or abandon given reaction event) are key

elements for the efficient collection of data.

The system described in this work was designed to collect and process data from

detectors composing a system for experiments in particle physics, though general

enough to be applied to any system demanding processing data from some

electronic sensors. The following description will focus on the overview of

components required to read out the sensors (hereinafter called detectors) which

are the state of art devices, developed to measure and register the smallest and the

7

most elusive phenomena humanity could witness so far. This is the reason why the

DAQ system for such application must follow the especially high requirements.

Regarding a system architecture, the simplest case scenario is a single channel

which generally consists of analog (shaper), digital processing units and

transmission path to the storage unit. Such chain can be extended to larger amount

of independent channels, by the introduction of additional elements that collect data

from several sources. The main challenge is however to avoid in the same time

degradation of the performance in terms of rate capabilities of the system. The aim

of reading out the sensors is to transform system response to a physical event,

classified by the time when it happened, into a set of digital values that represent

parameters of the response signal that is interesting from the analysis point of view.

The parameters can be the amplitude of the analog signal, the integrated charge of

the signal or the time when the signal was generated. The electronic modules that

create such information are called digitizers e.g. Analog to Digital Converter abbr.

ADC or Time to Digital Converter abbr. TDC. For example signal coming from a

typical detector (Figure 1) (e.g. current or voltage pulses) have to be prepared for

the digitizer by dedicated analog electronics consisting of several steps like signal

amplification, signal shaping and in case of TDC comparison with a predefined

discrimination level (fast discriminator).

Having digital values is already half of the success. Those values now have to be

transported to some permanent storage for later analysis, which in case of a single

channel is not a challenge, but in case of complex setups with thousands or millions

of sensors, the networking becomes state of art.

Shaper

Digitizer
Collector /
Transmiter

Analog pulse

Analog pulse

Digital value

Event
builder /
Storage

Digital value

Detector

Figure 1: Building blocks of a single channel readout chain. A physical event excites the

detector to generate an analog signal that is processed by shapers, digitizers, data

collectors and transmitters. The output is saved by Event Builders for offline analysis.

8

In order to fully understand the requirements facing modern data acquisition

ÓÙÓÔÅÍÓ ÉÎ ÐÈÙÓÉÃÓ ÅØÐÅÒÉÍÅÎÔÓȟ ÉÔȭÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÕÎÄÅÒÓÔÁÎÄ ÐÒÏÐÅÒÔÉÅÓ ÁÎÄ

demands addressed to all elements of DAQ. The first part of the next section is

covering all the stages of DAQ chain, describing step by step all its elements, starting

with different detectors types and the origin of analog signals. Then the concept of

triggering is introduced as a way of selection and preliminary data reduction.

Overview of standard, commercially available DAQ platforms is presented in a

section followed by description of Slow Control. The chapter is closed by a section

that aggregates the challenges facing the design and development of a typical

acquisition system.

2.1 $ÁÔÁ !ÃÑÕÉÓÉÔÉÏÎ 3ÙÓÔÅÍÓ

Large scale physics experiments use various types of detectors to gather the

maximum amount of possible interesting information from a single physical event.

Each type of the detector represents a specific reaction to a given radiation type (e.g.

charge particles, neutrals (photons, neutrons)) and its conversion into output signal,

which in general is an electrical impulse. Those responses depend on the type of

detector and reactions, thus each detector has to be equipped with a specifically

designed readout chain. All such subsystems have to be combined at some point into

one unified system. The entire chain can be divided into functional parts, which will

be described below, starting from the detector itself up to the final storage device.

2.1.1 Detectors

There are few main characteristics (12) which describe general characteristics and

capabilities of a particle detector:

¶ Sensitivity

Detector materials and its construction is selected to be sensitive to a given

ÔÙÐÅ ÏÆ ÒÁÄÉÁÔÉÏÎ ÁÔ Á ÓÐÅÃÉÆÉÅÄ ÅÎÅÒÇÙ ÒÁÎÇÅȢ !Ó ÉÔȭÓ ÔÈÅ ÆÉÒÓÔ ÃÏÎÓÉÄÅÒÁÔÉÏÎ

while selecting a detector type, it influences most of the following points.

¶ Type of detector response

Usually the information that a reaction happened in a detector or not is not

ÅÎÏÕÇÈȢ)ÔȭÓ ÁÌÓÏ ÉÍÐÏÒÔÁÎÔ ÔÏ ËÎÏ× ÔÈÅ ÅÎÅÒÇÙ ÄÅÐÏÓÉÔÅÄ ÉÎ ÔÈÅ ÄÅÔÅÃÔÏÒ

material and/or the time of arrival by the hitting particle. In terms of

electrical response, this is reflected as the integrated charge of the output

signal or as its amplitude and/or time when the signal crosses predefined

discrimination level.

9

¶ Energy, time resolution

This parameter defines the capability of the detector to distinguish different

energies deposed by the particles and the time of arrival. The smaller is the

measured difference in case of two identical signals, the more useful is that

information.

¶ Response function

Response function define the shape of the output signal that is generated by

the given particle (e.g. electron, muon, pion etc.). Good knowledge of the

response function is essential in order to distinguish between particle

species and defines conditions on quality of detector electronics.

¶ Response time

This factor is very important and strongly connected with the next point, the

dead time of DAQ. Under a strong irradiation, the rate of physical event which

have to be properly handled by the detector is very high. The response time

is the time that the detector materials and analog electronics spend on

constructing the output signal. The more time it takes, the higher is the

probability that it will register another reaction, leading to the mix-up of

both, which is called a pile-up effect.

¶ Dead time

This parameter describes the time needed by each part of the detection

ÓÙÓÔÅÍ ÔÏ ÐÒÏÐÅÒÌÙ ÐÒÏÃÅÓÓ ÔÈÅ ÅÖÅÎÔȢ)ÔȭÓ ÓÔÒÏÎÇÌÙ ÒÅÌÁÔÅÄ ÔÏ ÔÈÅ ÒÅÓÐÏÎÓÅ

time and influences detector efficiency.

¶ Detector efficiency

The most relevant measure of the detector quality and its suitability for a

given reaction to register. Taking into account all the previous parameters,

this one is the number of properly registered events compared to the number

of emitted events by the source.

2.1.2 Front-End Electronics

The parameters described above have to be taken into account while designing the

Front-End Electronics (abbr. FEE). The shape of the output signal is driven by each

element of the detector such as used materials, gas mixture or distribution of high

voltage. The detectors are adjusted to generate a proper output signal in case of a

given type of reaction in order to eliminate noise. Usually the signals are very fast

(width of order of several to tens of nano seconds) and can be small (amplitudes of

millivolts on 50 W). Therefore it is required to design the Front-End Electronics,

which will prepare those signals for digitization process. The nature of the signals

10

ÆÏÒÃÅ ÔÈÅ ÕÓÅ ÏÆ ÖÅÒÙ ÆÁÓÔ ÐÒÏÃÅÓÓÉÎÇ ÓÙÓÔÅÍÓȟ ÔÈÁÔȭÓ ×ÈÙ ÔÈÅ ÆÁÓÔȟ ÁÎÁÌÏÇ ÃÏÍÐÏÎÅÎÔÓ

are used at the stage of amplification and shaping.

The Front-End Electronics act as the interface between the response signal from the

detector and the characteristics of the proper input for the digitizers. The transfer

function (transformation from the input to the output signal) of the FEE has to be

defined depending on the type of the measurement (whether it is time, charge or the

amplitude):

¶ Amplitude or charge measurement

Applications where the shape of the signal is analyzed, require very well

defined output signals. That is why the electronics are equipped with

amplifiers and shapers. First ones adjust the amplitude of the signal to the

acceptable amplitudes range of the digitizer. Shapers are used in order to

emphasize some characteristics of the signal (e.g. long rising edge of the

signal required for taking several samples).

¶ Time measurement

A very fast discrimination technique is required in order to separate the

signals from noise. Discriminators compare the amplitude of the input signal

to the applied threshold level and in case the signal is large enough, an

impulse is created on the output of the device. The time difference between

this impulse and some reference signal is the exact result of the

measurement. The quality of the discriminator defines the time jitter of the

output as a response for the same input signal as well as the time needed for

generating the response (longer time leads to larger dead time).

2.1.3 Digitizers

When designing the entire data acquisition system, the first thing to start from is the

nature and the characteristics of the response signal from all the detectors that need

to be read out. Next step is the selection of the digitizing device suitable for the

wanted kind of measurement. Such devices work properly when the input signal

parameters fit into some range of values. For this reason the raw, output signal from

the detector is passed through analog electronics, as described in the previous

section. Usually, the larger, longer and better shaped signals are easier to digitize

thus generating a more accurate result. On the other hand, preparing a longer signal

takes time, which increases dead time of the readout, which in turn might reduce

ÔÈÅ ÅÆÆÉÃÉÅÎÃÙ ÉÎ ÃÁÓÅ ÏÆ ÈÉÇÈ ÒÅÁÃÔÉÏÎ ÒÁÔÅÓȢ 4ÈÁÔȭÓ ×ÈÙȟ ÅÁÃÈ ÓÃÅÎÁÒÉÏ ÈÁÓ ÔÏ ÂÅ

analyzed individually and the best balance between wanted result accuracy, overall

efficiency and usually the cost per channel has to be worked out. It is preferable to

perform digitalization as soon as possible (closest to the detector) as the digital data

is less affected by noise interference. The measurement devices can be grouped by

the aspect of the analog signal that they observe.

11

¶ Analog to Digital Converters (abbr. ADC)

ADC are devices (13) that generate a series of digital values that approximate

the input, analog signal. There are different ways of converting the input

voltage into a digital value. The basic idea consists of a chain of comparators,

where each one has a different threshold applied, distributed with an even

step. Applying an input voltage which is inside the range defined by the

thresholds of the comparators, some of them will respond with an active

signal, meaning that the input voltage was higher than the applied threshold.

Such a measurement is called quantization, repeated at high frequency is

called sampling process and results in digital representation of the analog

signal in a function of time (example of sampling ADC output on Figure 2).

The above described solution forms a device called sampling ADC. Another

approach to that matter is the integrating ADC, which instead of comparing

the input analog signal, first passes it through a capacitor that collects carried

charge and measures its value.

There are several parameters that define the quality of a single measurement

performed by the ADC. Of course the resolution and the sampling rate are the

most relevant ones. Resolution is defined by the amount of comparison

points of the analog value (e.g. number of comparators to which input voltage

is applied). The higher resolution, the more accurately digital value will

represent measured voltage. Time distance between two consecutives

samples is called sampling rate. Large number of samples collected in a short

Figure 2: Reconstruction of analog signals from Electromagnetic Calorimeter for

HADES experiment of different amplitudes (different colours), measured with

sampling ADC. The X axis represents number of sample, which is also marked by dots

on the plots, the Y axis represents mV of measured signal at the sampling point. (49)

12

period of time, gives a possibility to recover the shape of the analog signal.

The error in measurement is introduced by several elements in ADC devices.

The most important is obviously its resolution but also the nonlinearity of

consisting elements and general noise toleration are strong factors.

¶ Time to Digital Converters (abbr. TDC)

Applications like time of flight measurement in tracking detectors require

devices that can precisely measure the time elapsed between two events.

Technology of time measurement has made a huge step forward last years,

improvin g the resolution to single picoseconds using digital TDCs (14)

implemented in Field Programmable Gate Arrays (6). Time to Digital

Converters make use of the fact that signal propagation through electronic

elements requires some time. By creating a chain of such elements and

injecting a pulse inside, one can estimate how wide was that pulse or what

was the time distance between two signals (Figure 3). The smaller is the

delay introduced by a single element the better is overall time resolution.

There are of course several obstacles that need to be considered. All elements

composing a single delay chain should have the same signal propagation

time, any deviation of the mean value is called Differential Non Linearity

(abbr. DNL) and is a main factor lowering the resolution of the measurement.

What is worse is that those parameters can change due to temperature or

input voltage fluctuations during the run time. Some techniques exist that can

help reducing this problem, one of those is the wave-union method, which

involves performing several measurements on one delay chain, using one

input signal.

Figure 3: Structure of a single channel of TDC implemented in FPGA logic. Amount of

delay elements traversed by the input signal is translated into period of time.

Histogram on the right represents a time difference measurement of two

photomultipliers used for JPET tomograph prototype. The achieved time resolution is

125ps which include the detector response fluctuations and front-end module jitter.

13

2.1.4 Data Concentrators, Networking and Event Building

The readout of a single detector channel can be successfully realized with a digital

oscilloscope which contains the above mentioned measurement devices. When it

comes to high energy physics experiments, their scale can be overwhelming. Taking

HADES as an example (which is a medium sized experiment), it consists of 7 detector

subsyÓÔÅÍÓȟ ÓÕÍÍÉÎÇ ÕÐ ÔÏ ÔÏÔÁÌ ÏÆ ψπȟπππ ÁÎÁÌÏÇ ÃÈÁÎÎÅÌÓȢ)ÔȭÓ Á ÔÒÕÅ ÃÈÁÌÌÅÎÇÅ ÆÏÒ

the DAQ and network designers to assure that the data transport will be reliable and

fast enough. Each channel has to be shaped, measured, marked with its coordinates

in the system and then transported to event building computers. Data collection

takes place on several stages, as well on hardware level (ADCs and TDCs usually

have several input channels) as on logic (data from a number of digitizers forms

larger blocks, which are treated as entities). The data concentration in the DAQ

readout chain is performed up to a stage when the data can exit the digital

electronics and enter a standardized network via a network gateway, leading to the

event builders. The number of concentration steps depends on the type of hardware

used in the system and the systems architecture. Analysis algorithms implemented

in hardware might require data from a selected sectors or detector subsets. The data

from single channels must be therefore properly grouped, marked, packed and

delivered to the component running analysis. In case of systems without online

hardware analysis features it is preferable to forward the data to the network

gateways as soon as possible, as it reduces the costs, complexity level of the system

and the dead time.

Concentrators are also used in the opposite direction, not only gathering data

coming from the detectors but also distributing the trigger and slow control

information. Trigger system (see next section) is required to control the process of

the entire readout. The trigger information, under different forms (in some systems

it is just an analog impulse and in the others it is a data packet) must be delivered to

all the endpoints of the DAQ, including Front-End boards. The concentrator facility

can be used to transport that information in the downstream direction. It is the same

situation when it comes to slow control. Slow control gives access to the settings of

the components in the system from a central point and to monitor state of its

components. It is crucial to have a possibility of configuring the system and adjusting

its operation according to given experiment conditions. The same infrastructure can

be used in order to transmit, broadcast and gather configuration settings from the

system components.

14

All those three functionalities (data readout, trigger and slow control distribution)

require data to cross between two or more different subsystems (Figure 4). The DAQ

electronics need to transfer readout data to the Event Building machines, the Slow

Control commands generated on a supervisor PC need to be sent to certain DAQ

Endpoints and the Trigger information has to be delivered to all the components.

Having many interconnected subsystems that exchange data between modules

requires a unified network infrastructure. As the industrial telecommunication

sector is expanding, there are many out of the box solutions available at the market.

The only requirement is that all the subsystems have to be equipped with network

gateways applying a chosen standard. Nowadays, the Gigabit Ethernet (15) is a

commonly found solution in many existing experiments. It is a well-known, easy to

implement and verified standard with affordable equipment.

Event building is a task of reconstructing an entire event from all the small pieces of

ÄÁÔÁȟ ÃÏÍÉÎÇ ÆÒÏÍ ÄÉÆÆÅÒÅÎÔ ÓÏÕÒÃÅÓ ÉÎ ÔÈÅ ×ÈÏÌÅ ÓÙÓÔÅÍȟ ÉÔȭÓ ÔÈÅ ÌÁÓÔ ÓÔÅÐ ÏÆ

concentration. Depending on the system architecture and the online analysis

algorithms, the reassembly can be realized either in the hardware or by the event

building computers. In cases where the data from the entire system is needed for an

online algorithm, the concentration has to merge all the parts and deliver an entire

event to that stage. In other cases, algorithms are performed locally, on a subset of

data coming from a given subsystem, hence the event building combines those local

parts together into a single unit. Moreover, the raw detector data is often extended

Event Builders

Slow Control
Interface

DAQ
Endp.

DAQ
Endp.

DAQ
Endp.

DAQ
Endp.

Concentrator

Trigger
Source

DAQ
Endp.

DAQ
Endp.

DAQ
Endp.

DAQ
Endp.

Concentrator

Concentrator
Network

Figure 4: Scheme of the DAQ components interconnections with subsystems. DAQ

Endpoints (digitizers, active FEEs, etc.) communicate through several layers of

concentrators and network with Event Building machines, Slow Control computers

and a Trigger System.

15

by the results of the online algorithms, which have to be properly attached to a

correct event data.

Hardware event building is expensive and difficult to implement. The data has to be

reassembled, stored in buffers and transmitted as a whole unit to the storage

devices. The main problem is the buffering and memory needed for such online

processing. It is usually avoided in applications, where there is no requirement of

analyzing entire events on the hardware level. Preferably the small data parts are

being sent from the DAQ electronics, through the network to the event building

machines. Although, high fragmentation can lead to overloading the receiving

computers.

Event building machines come in form of powerful, often server class computers

with multi -processor support, high speed network interfaces and large disk space.

Those requirements are crucial in order to receive and store data streams from the

DAQ system. The data is stored temporarily on local hard drives before it is

transferred to some permanent storage. As all the data from experiments has to be

accessible at any time by physicists, it is required to use technologies that are

reliable and robust. One of such is the storage on magnetic tapes which is an

expensive and slow medium but gives the best results as permanent storage. It

should be noted that, the data volume from a single run of a medium-sized

experiment can reach up to dozen petabytes, which have to be stored for unlimited

amount of time.

2.2 4ÒÉÇÇÅÒ 3ÙÓÔÅÍÓ ÁÎÄ $ÁÔÁ $ÉÓÃÒÉÍÉÎÁÔÉÏÎ

The rate of physical events taking place in a detector system is very high in

comparison to the rate of events really interesting for the physicists. An example

that is usually brought up is the Large Hadron Collider (abbr. LHC) constructed at

CERN facility. The event rate (16) expected for the operational energy settles at level

of ρπ events per second, while the Higgs Boson is due to appear only once per

second. That means that for such a case, all the other events are not valuable from

the physics point of view and are treated as noise. The mechanism of selecting

events that are supposed to contain important information is called triggering and

is crucial for an efficient operation of the entire experiment. Trigger systems are

hierarchical mechanisms that preform data filtering on several stages, passing to the

next stage only data which was proven positive for passing the tests. Each trigger

stage introduces more advanced method or algorithm to select only valuable events.

Those systems are very efficient in reducing the amount of data that needs to be

processed by the entire system, but also help physicists by providing them cleaner

data, with less unimportant, noise events. On the other hand there is a risk of

rejecting valuable data. The trigger mechanism introduces a latency which can

result in a dead time and lower overall rate of detectors readout, thus resulting in

data loss. The online analysis algorithms require time to perform which enforces the

16

buffering of the data at the early stages. Taking high rates into account, those

processes always result in lowering the overall efficiency of the system, but deliver

more valuable events.

4ÈÅÒÅ ÉÓ ÁÌÓÏ ÁÎ ÁÌÔÅÒÎÁÔÉÖÅ ÁÐÐÒÏÁÃÈȟ ×ÈÉÃÈ ÄÏÅÓÎȭÔ ÍÁËÅ ÕÓÅ ÏÆ ÔÒÉÇÇÅÒ ÓÙÓÔÅÍȟ

instead it uses a more advanced discrimination mechanisms. An example of such

system is the design of PANDA data acquisition system (17), where data is taken

continuously and is buffered in the DAQ electronics, waiting until the readout signal

arr ives, which happens with a fixed frequency. The data organized in time epoques

is then transferred to powerful computer farm for the event processing with several

alternative trigger algorithms. Such approach is called trigger-less system and

depends on discrimination power of data at the earliest stage possible and powerful

network capabilities allowing the transport of data representing the detectors state

over an entire period of time.

As the detectors and front-end electronics work continuously processing analog

signals into digital data, the trigger signal can be treated as the signal that selects

which data should be passed to the next stage of the readout chain. Usually some

crucial parts of detectors are being analyzed in terms of response existence and put

through some Boolean function. An example of such approach is the multiplicity or

coincidence triggers, which activate the readout only in case the amount of detector

channels that have produced a proper response is higher than some limit. Of course

there exist solutions combining different approaches together, creating a tailored

solution for a given experiment requirements.

Higher trigger levels often include pattern recognition algorithms, which can be

implemented in FPGA devices or on GPUs. This assures the minimum dead time and

allows highly parallel solutions. An example of such algorithms is the recognition of

detector channels that fired forming some kind of geometry figures like straight

lines or circles as it is the case in Ring Imaging Cherenkov Detector (abbr. RICH)

detectors type (Figure 5).

Figure 5: An example of an event collected with RICH (37) detector in HADES

experiment. Colored pixels represent cells in the detector which fired, surpassing

thresholds. One can notice ring shaped clusters that represent photons.

17

2.3 3ÌÏ× #ÏÎÔÒÏÌ

Another key element of the DAQ system is the ability to control its elements. Such

subsystem, called Slow Control System (abbr. SCS), requires hardware facility,

firmware and software allowing to configure parameters of the readout process and

permanently monitor its behavior. Hardware needs to be equipped with some sort

of network interface. Hence the firmware on the electronics also has to support the

selected protocols and communication standard. In modern systems, the basic

channel for Slow Control is the Gigabit Ethernet connection. It features individual,

broadcast or multicast addressing and routing capabilities which allow to

communicate with selected elements of the system. An important aspect is also the

fact that basic networking knowledge is enough to write software for sending and

receiving Slow Control commands from the PC level.

There are systems which mix the communication standards in order to reduce

required hardware and use efficiently the existing components. An example of such

system is the HADES DAQ, described in more details in section 5.1. Slow Control

commands are being sent from the controlling PC over Gigabit Ethernet links to the

first GbE gateway of the system. It is usually the first concentrator board. At that

stage the Ethernet packet is transcoded into custom, inter-electronics

communication protocol TrbNet, originally developed for the system presented in

this thesis, and is transmitted further to the endpoint with the use of optical TrbNet

connection. The protocol offers three logical channels with following functionalities:

readout request distribution, data readout and Slow Control.

Most of the programmable electronics components of the system, present a set of

registers which can be grouped into two main groups: status and control. The status

registers allow to check the state of different components in the module (e.g.

transmitted bytes counter, received trigger signals counters etc.). This is used

mainly for the monitoring process. The control registers are used in order to alter

the default configuration of the modules. Through those registers, one can for

example enable or disable data channels, set the thresholds on inputs etc.

The ability of remote control of the elements as well as wide spectrum of available

functionalities through the registers is crucial for efficient use of the modules. The

Slow Control System has to be designed in a modular way that facilitates the process

of including new components and functionalities. This has to be assured by both the

firmware, which exposes multiple registers and software that allows the

configuration of those registers in a human friendly manner. As the DAQ systems

are getting more complex, most of the monitoring, online statistics and

configuration processes are being executed automatically by the Slow Control

software, but has to give the ability for the operator to access those values at any

time.

18

2.4 /ÆÆȤÓÈÅÌÆ $!1 ÁÎÄ 4ÒÉÇÇÅÒ 0ÌÁÔÆÏÒÍÓ

There are several commercial standards which were developed throughout the

years, which unify some of the basic building blocks of DAQ and trigger systems.

Such platforms provide standardized and modular solutions for building complex

systems. They are based on a concept of a crate, which provides power, cooling and

interconnection for a number of modules that can be inserted inside. Modules are

designed to perform the basic functions of DAQ systems, like discriminators,

digitizers or controllers. By connecting them together, one can build a complete data

acquisition chain. The main advantage of such approach is that there are ready, out

of the box modules, which are reliable and supported by the manufacturer. The

drawback is that the modules are designed to work in a wide spectrum of

applications and are not tailored for the exact type of detector or signal and have

limited scalability possibilities.

The first and the simplest standard was introduced in 1968 by the U.S. Atomic

Energy Commission. Nuclear Instrumentation Module (abbr. NIM) (18)

standardizes the size, cabling, power supply and the backplane pinout. The modules

perform very simple tasks like signal discrimination, coincidence, logic functions

etc. Even though, they are not interconnected and cannot be controlled

programmatically, they are widely used in some parts of modern experiments,

which do not require the processing of digital data. For instance NIM modules can

be successfully used for generation of low level trigger based on coincidence, thanks

to its robustness and fast analog signal processing.

Low level functionality and manual operation of NIM modules led to development

of a new solution which could be connected to computers. Computer Automated

Measurement and Control (abbr. CAMAC) (3) was introduced in 1972 and was the

first standard of readout electronics that could be controlled by computer, providing

automation of the entire data collection process. Like NIM, standard describes the

mechanical characteristics of modules, electrical standards and backplane pinout.

CAMAC extends NIM functionality by communication features, which allows the

transfer of digital data. The modules are working in a slave-master mode. Each crate

should be equipped with a Crate Controller, a module that act as an interface with

controlling computer and a bridge to access each module individually. The Crate

Controller is called master while all the other modules are slaves. The system can be

easily scaled for higher number of creates by the use of module called Branch

Highway, which allows to connect several creates together.

19

Fast growth of scales of physic experiments and of computing power, quickly

exceeded the bandwidth offered by the CAMAC standard, which became obsolete.

Its place was taken by developed in 1981 Versa Module Europa (abbr. VME) bus (2).

This standard has also found its place in industry which resulted in development of

a high number of modules implementing versatile functionalities that could also be

used in science. Faster bus allows transmission of larger amount of data (40 MBps),

thus increasing channel density that could be processed by a single module. In

addition, in order to assure backward compatibility, a module that interfaces to

CAMAC system was developed, which helped in reuse of legacy modules (Figure 6).

Even though all of the mentioned standards are still being used in most of the

experiments as some parts of DAQ systems, the scale of detector systems and the

complexity of required computing induce the development of new solutions. Up to

now there is no modern standard platform on which the entire readout chain could

be built. One platform that found its way from the communication industry into

physic experiments is the Advanced Telecommunications Computing Architecture

(abbr. ATCA) (19). It offers very high backplane connection speed in full mesh

architecture, which means that each module in crate can directly communicate with

any other modules. The main drawback is that as the main purpose of the standard

was different, there are not many modules with functionality needed for DAQ

systems available on market. The ATCA standard is used more as platform for

custom built electronics, providing mechanical support, power supply, cooling

systems and interconnectivity of modules.

2.5 -ÏÄÅÌÓȟ 2ÅÑÕÉÒÅÍÅÎÔÓ ÁÎÄ #ÈÁÌÌÅÎÇÅÓ

In an ideal case, data acquisition system in conjunction with trigger system is

supposed to process all the events happening in detectors. The reality imposes a

number of conditions which limit the amount of data that can be processed and

stored for later analysis. All factors, starting from detector response shaping time,

time needed for digitization, network throughput and buffering capabilities define

time needed to process a single event, which in turn determines dead time of the

Figure 6: Three different create standards. From the left side: CAMAC, VME and ATCA.

[Pictures from www.wiener-d.com, www.pentairprotect.biz/en/emea]

20

entire system. On the other hand, only events considered as candidates for

containing interesting data should arrive to the end of the readout chain. That is

important in order to minimize amount of the storage needed and also to facilitate

the work for physicists who will analyze the data by online filtering, thus reducing

data volume.

2.5.1 Models

The way the systems operate can be categorized as pull or push type of systems. In

system operating in pull mode, the data is requested to be read out by the trigger

system. The data is buffered at an early stage and some parts of it are being analyzed

by trigger algorithms. Positive trigger signal is propagated back and the event parts

are retrieved from buffers. This architecture is based on very fast trigger mechanism

and is useful in conditions where most of the events can be easily rejected as noise.

In opposition, in push architecture, collected data is directly or on fixed rate,

transferred between data acquisition stages. Each stage introduces higher level of

filtering mechanism, reducing amount of data that arrives at the end of the chain.

This solution is efficient in case the decision about the quality of an event is more

complex, requiring complicated analysis or operating on larger detector areas.

Depending on the data qualification algorithms, mixed systems also exist, where

initial phase of acquisition is accomplished in one type of architecture and further

processing is realized by the other type.

Designing architecture of the data acquisition systems is a complex balance between

the capabilities of readout electronics, online data analysis computational

complexity, possible network infrastructure and the requirements imposed by

physicists on wanted data quality. DAQ system concepts should be simulated prior

to taking final decision about their architecture. Models describing data flow in a

system are based on mechanisms specified by queueing theory (20). Single

fragments of the entire readout chain can be treated as queue instances represented

in Kendall notation as:

ρ Ⱦ ς Ⱦ σ Ⱦ τ

Where [1] stands for the time distribution of incoming elements into the queue, [2]

is the time distribution of processing an element by a single service, which amount

is represented by [3]. The way elements from the queue are selected to be processed

[4] can be either one of: FCFS (First Come First Served), LCFS (Last Come First

Served) or randomly selected. In case it is not specified in the formula, FCFS is

assumed by default. For instance a primary task of a collector board is to collect data

from several links, encapsulate with some headers and forward to further stages on

a single link. For a single event, the data fragments are arriving on the input links

with different time offsets [1], forming a queue. The process which takes that data

and forms an outgoing packet is a single service [3]. As all data fragments can have

various sizes, the time needed for its processing is also a variable [2]. The process

21

forms a packet by taking input fragments as soon as they arrive, thus the queue type

is FCFS [4].

2.5.2 Requirements and Challenges

As most of the electronics are nowadays equipped with programmable devices, the

main weight on the capabilities and efficiency of the system is imposed on the

firmware and software development. The detectors are able to generate enormous

amount of data, thus designing a DAQ system is always about finding a proper

balance between the achievable throughput, the measurement resolutions and the

final amount of data with reasonable signal to noise ratio.

Designing a data acquisition system is extremely difficult. The experiments take

sometimes dozens of years to develop. Taking into account the pace of evolution of

technology, some functionalities that are not available at the beginning of the R&D

phase can become common throughout the years. That is the reason why, the

programmable devices are widely used in the DAQ electronics. It is easier and

cheaper to develop new firmware than to produce new electronic components.

It is also almost impossible to predict how the entire project will develop over the

time. Thus the architecture of the DAQ system has to be extensible and flexible

enough in order to include new modules and functionalities introduced during the

operation time. To get most of the detector systems, they have a diverse physic

program foreseen to perform over the years. It is important to have a DAQ system

that can be adjusted for efficient data collection under different conditions imposed

by the specific experiment.

The first constraints about the data quality are submitted by physicists and their

physic goal. This depends on the type of collision they want to register and the type

of the detectors used in the system. Different intensities derive directly the hit rate

on the detectors. The wanted type of collision can be selected with a trigger system

and reduce the rate of the events that are processed by the system. The range of the

accepted events rate is the first aspect that has to be taken into account. The second

aspect is the desired digitalization resolution and channel density. More precise

measurement results in larger amount of digital data that has to be processed by the

system.

In order to achieve the maximum available data throughput in the system, many of

its components have to be properly designed and implemented. At first the digitized

data is captured in buffers and waits for the readout request. The efficient use of

available memory resources is crucial for minimizing data loss and so called event

mixing when it comes to high rates. Data loss can happen when the defined buffers

overflow, which can be a cause of backpressure generated by busy subsequent

components in the system. Thus, real time processing with minimum latency is

required to be implemented on critical paths. To avoid event mixing, a situation

22

when parts of different events are combined together and memory is organized in a

form of queues, usually FIFOs. Synchronized around the entire system write and

read operations on such memory blocks allow to keep collection and reassembly

process in order.

23

3 02/'2!--!",% ,/')#
$%6)#%3

The main difference between standard processor and a programmable logic device

(abbr. PLD) is that their internal structure is not fixed. Taking standard CPUs as an

example, one can run a program which will be executed on the internal

infrastructure of logic components. Programming logic devices means describing

and defining this infrastructure. Instead of fixed structure, PLDs consist of arrays of

general logic blocks, which can be configured individually. Using a Hardware

Description Language (abbr. HDL) and a dedicated compiler, the abstract logic

functions described by the developer are translated into series of logic blocks

configured and interconnected accordingly.

There is a lot of various programmable logic devices available nowadays on market.

They can be classified under different aspects like reprogramming, available

resources, configuration holding etc. We will focus only on two main families of

devices: Complex Programmable Logic Devices (abbr. CPLD) and Field

Programmable Logic Devices (abbr. FPGA), which are most commonly used PLDs

categorized as High Capacity Programmable Logic Devices (abbr. HCPLD). The

aspect that distinguish those two is the non-volatile memory of CPLDs and the

amount of resources. The internal structure of the chip is constructed differently,

ÕÓÉÎÇ ÔÈÅ ÓÏ ÃÁÌÌÅÄ ȰÓÅÁ ÏÆ ÇÁÔÅÓȱ ÉÎÓÔÅÁÄ ÏÆ ÃÏÎÆÉÇÕÒÁÂÌÅ ÌÏÇÉÃ ÂÌÏÃËÓ ÆÏÕÎÄ ÏÎ &0'!Óȟ

allowing once loaded configuration to remain after power cycle. All logic blocks

building an FPGA lose their configuration and need to be programmed after

powering up. On the other hand, FPGAs deliver much more complex hardware

features inside the chip and have the amount of resources higher by several orders

of magnitude. The programming of FPGAs can be automated by installing a

dedicated RAM memory holding configuration, which is loaded on startup. Those

24

two aspects separate the use cases for both types. CPLDs are mostly used for simple

tasks with fixed functionality like interfaces between devices or implementing glue

logic. Huge amount of resources on FPGAs gives the possibility of implementing

complex functions and algorithms, hence they are used as system controllers and

data processors.

Miniaturization and introduction of 20 nm technology process strongly increased

the amount of logic resources that could be packed into a single device, while

keeping reasonable size, price and power consumption. Large jump in logic

capability attracted a lot of customers from fields like networking technology, data

processing, military and of course high energy physics. They no longer offer logic

gates only but also complex hardware elements like high speed transceivers,

memory blocks, Digital Signal Processing (abbr. DSP) blocks and even built in

microprocessors platforms like PowerPC or ARM, transforming FPGAs into System

On Chip (abbr. SoC) solutions.

High performance capabilities, reconfiguration and relatively low cost are the key

reasons why FPGAs are often chosen to equip electronics in data acquisition

systems. The chapter starts by covering the nature and structure of FPGA devices.

Then the basics of programming language are presented, followed by the

methodology of working with this kind of programmable devices. The chapter is

closed by an example of comparison between different computational platforms.

3.1 &0'! $ÅÖÉÃÅ 3ÔÒÕÃÔÕÒÅ

The key building blocks of FPGA devices are Slices, grouped by two or more,

depending on a specific device model. Grouped Slices are forming Configurable

Logic Blocks (abbr. CLB), which in turn are arranged into large arrays. Each Slice can

be configured to realize a given, basic logic function like AND, OR etc. of its inputs

and present the result on its output. Depending on the complexity of the FPGA, the

construction and the components included in a single Slice differ. They all share

some basic features (Figure 7) though, which are Lookup Tables (abbr. LUT),

multiplexers and Flip Flops. Lookup Tables, also called Function Generators store

logic functions which are selected through configuration process, Flip Flops realize

synchronization with the clock and the multiplexers select appropriate outputs. This

set of essential components can be extended by additional adders, RAM blocks or

carry logic, which can be shared between Slices. Each CLB is interconnected with its

neighbors, which gives the possibility of implementing any kind of logic functions

by configuring each element accordingly.

25

CLB can process several input signals, through selected basic logic function and

deliver the outcome signal on its outputs. In order to supply input signals from FPGA

pins to its interior, there are special IO Blocks. Each general pin can be configured

as input, output or tristate port. In order to enable such functionality, pins are

surrounded with clocked registers, which can be adjusted to the selected type of

electrical standard. A pair of pins can run in differential standard like LVDS, which

is used in cases where high speed and noise secure transmission is required.

Configured as input, registers act as buffers registering the state of input signal at

the clock ticks. In case of output ports, the registers drive the pin with a clocked

signal provided as its input. More advanced FPGAs present more complex IO blocks

supplying additional functionality like Serializer-Deserializer (abbr. SERDES)

modules or delay blocks. SERDES facilitates transmission of entire data words over

single pins by dividing the word into a sequence of bits. In the other direction, it

gathers several bits together and presents a recovered word to FPGA internal logic.

Those modules can run in Single Data Rate (abbr. SDR) or Dual Data Rate (abbr.

DDR). The difference is in the way that single bits are presented at the output (or

registered on the input). In case of single rate, the bits change at the rising edge of

the clock and in case of dual rate, the change occurs both at the rising and at the

falling edge of the clock signal. The delay block helps adjusting the input data signal

to the clock signal edges, in order to register its state exactly at the moment of clocks

state transition.

Most applications require logic to run synchronously in respect to some clock signal.

The signal can come from various sources like external oscillator connected to an

input pin or clock recovered from incoming data stream. The clock distribution to

all the Flip Flops in Slices is realized by special routing nets. In order to allow the

different parts of logic to run at different clock frequencies and to optimize the usage

of resources, there exists many kinds of clock routing net types in a single FPGA

Figure 7: CLB (left) of Virtex II FPGA containing four Slices, each Slice (right) is built

out of two 4-input LUTs, carry lines and flip-flops. [xilinx.com]

26

chips. Inside an average device, user can find several nets call Global Clocks, which

should be used by general clocks needed to be distributed all over the device. High

frequency applications can suffer from delay introduced by long distribution paths.

Regional Clocks are routed only within some defined regions, usually a single bank.

They are efficient for logic interfacing with external devices, connected to pins

located at a given bank. Single design often contains several parts of logic, running

with different clock frequencies. Having a single clock signal, it is possible to

generate a number of clock signals with various frequencies by the use of Digital

Clock Managers (abbr. DCM). It is very important for a developer to properly

combine those parts together and secure all the clock domains crossings.

Data processed by an FPGA needs to be buffered for transmissions or stored for

further manipulations. There exist several solutions which can be applied for that

purpose. All FPGAs provide some amount of internal memory in form of Memory

Blocks placed in specified locations between CLBs. Very fast to access (one clock

cycle to retrieve an entire word) and easiest to use is the main source of memory,

ÂÕÔ ÉÔȭÓ ÃÁÐÁÃÉÔÙ ÉÓ limited to few or dozen MB per average device. Another way to

store data is the use of Slices in CLBs as memory cells. One can consume general

resources and convert it into memory as a tradeoff between the amount of resources

available for implementing logic and the amount converted to memory. In case the

capacity is the key aspect, there is no other way, than to access an external memory

ÃÈÉÐ ÏÒ ÃÁÒÄȢ)ÔȭÓ ÔÈÅ ÍÏÓÔ ÄÉÆÆÉÃÕÌÔ ÔÏ ÄÅÓÉÇÎ ÁÎÄ ÉÍÐÌÅÍÅÎÔ ÓÏÌÕÔÉÏÎȟ ÁÌÓÏ ÍÕÃÈ

slower than the use of internal memory. The internal memory can be configured in

various ways. Access type defines if the memory block will be used as standard

memory (write a data word under a specified address cell) or as a queue (written

elements are added at the end of a queue). The access operations can be realized

using one or two ports. In single port memory, write and read operations are

executed synchronously to one, main clock, while in dual port, each operation can

be clocked with a different frequency. This is especially useful for passing data

through different clock domains.

27

Presented above components (Figure 8) are essential for all applications, but

modern FPGAs feature many additional hardware elements that extend their

functionality. One of such elements commonly found on nowadays devices is the

Digital Signal Processing (abbr. DSP) block. Similarly to memory blocks, the DSPs

are distributed inside an FPGA and can be used to perform intensive

computationally operations. In order to provide data to or transfer processed data

out of a FPGA, it is equipped with many Gigabit Transceivers. Standard FPGA pins

are capable of driving signals up to few Gbps. Gigabit Transceivers are prepared to

handle data transmission in current communication standards, reaching up to 32

Gbps for most advanced devices. Those transceivers enable full duplex

communication in standards like 1/10 Gigabit Ethernet, high speed PCIExpress and

others. Those link layer protocols can also be found as hardware elements, built in

FPGA fabric. Another interesting device found inside chips are microprocessors. Full

featured PowerPC or ARM cores can be accessed from internals of FPGA and can be

used to perform high level calculations on data received and pre-processed by

standard logic Slices.

3.2 0ÒÏÇÒÁÍÉÎÇ ,ÁÎÇÕÁÇÅ ɀ 6($,

It is crucial to understand the difference between writing executable code for

standard CPUs and writing a code that represents physical architecture of a system.

FPGAs do not execute any commands but gets configured to process data from input

Figure 8: Example of Lattice ECP2M FPGA internals, IO blocks can be found on the

edges, blue blocks are CLBs and red elements are memory blocks [latticesemi.com]

28

pins and present the result on output pins. This is the reason why the family of

languages used for developing logic is called Hardware Description Language (abbr.

HDL). Initially they were used for describing entire printed circuit boards, with all

equipped electronic components and interconnections. First languages were used

to automate the process of developing new electronic systems. Introduction of ASIC

and FPGA devices required a way of configuring them by the developers. At the

beginning they had to be selected and connected by hand logic gates, creating

schematics which were converted into stream of bits representing the configuration

of CLBs inside FPGA. In order to elevate the abstraction level and automate this

process, some of HDL languages were adapted, from which two most popular are

still in use: Verilog and Very High Speed Integrated Circuits Hardware Description

Language (abbr. VHDL). As the language used for implementing solutions, which are

subject of this thesis, we will focus on the second one.

VHDL focuses on description of logic circuits in a form single entities that realize

logic functions of signals on its input ports and provide the result on the output

ports. The set of ports is called an interface. Such entity can be easily pictured as an

electronic component with its pins as interface and some internal logic, with the

difference that in case of FPGA this component is just a logical module instantiated

in an array of CLBs. Module called top entity is the main component that represents

the entire FPGA (Figure 9). Each port on its interface is mapped into a physical pin

of the chip. All other entities can be instantiated inside top entity, what makes the

hierarchical structure of the VHDL code.

A single entity describes the relation between its input signals and output ports.

Such relation can be basic (e.g. logical conjunction of several inputs presented on

one output port) or complex, where input signals pass through logic functions,

embedded hardware FPGA components or instances of other entities. Apart from

interface ports, each entity can define a number of internal signals, local to its

instance.

Top Entity

In
p

u
t

P
o

rt
s

O
u

tp
u
t P

o
rts

Entity 1
Instance

Entity 2
Instance

Glue Logic

Figure 9: Example of structure of a top entity with ports and instances of other

components in the interior interconnected by some logic.

29

Relations between signals are written as statements in a form of assignments or

processes. Assignments are asynchronous basic logic functions and connections

between signals. Asynchronous logic is realized without the use of Flip Flops, which

means that in case when one signal drives another, the second one will change its

state after a short delay, which is equal to the sum of delays introduced by

electronics components on the path between CLBs in which the signals are stored.

)ÔȭÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÎÏÔÉÃÅ ÔÈÁÔ ÓÕÃÈ ÁÓÓÉÇÎÍÅÎÔ ÉÓ ÎÏÔ Á ÃÏÍÍÁÎÄ ÔÈÁÔ ÉÓ ÅØÅÃÕÔÅÄ ÏÎÃÅȟ

it rather describes a hardware path which will exist in the FPGA and the dataflow.

Behavioral logic requires a code structure called a processȢ)ÔȭÓ Á ÓÔÒÕÃÔÕÒÅ ×ÈÉÃÈ

helps encapsulating several assignments under complex conditions and introducing

helper local variables. Similarly to an assignment, logic included in several processes

ÉÓ ÐÅÒÆÏÒÍÅÄ ÉÎ ÐÁÒÁÌÌÅÌ ÁÎÄ ÄÅÓÃÒÉÂÅÓ ÒÅÌÁÔÉÏÎÓȟ ÓÏ ÉÔȭÓ ÎÏÔ ÅØÅÃÕÔÅÄ ÏÎÃÅȢ

Each statement describing logic of an entity, whether it is an assignment or a process

is working in parallel in respect to other statements in the entire project. Such logic

is a stateless automata. In order to implement advanced processing algorithms,

there is a need to introduce Moore or Mealy Finite State Machine (abbr. FSM)

mechanism. In a single FPGA device the logic can be a mix of

synchronous/asynchronous parts and direct or controlled by FSM logic. Finite State

Machines are essential elements of controlling the dataflow and the processing

procedures (Figure 10). They define a set of states in which the logic can operate. In

each state the logic is realizing a specified task. It is a way of dividing and sequencing

the whole procedure into a number of steps that need to be taken. Each state has

well defined transitions to other states. Starting from the first state, the transition

conditions are checked at each clock cycle. If any condition is proven positive, the

actual state is changed, otherwise the actual state remains the same and the

procedure continues to perform the task described by it. VHDL provides conditional

statements like if or case. Those statements are translated by the compiler into

series of comparators and multiplexers configured and connected in CLBs. The

nature of FPGA devices allow to instantiate a number of FSMs inside a single design,

all of them will run in parallel, steering the work of some parts of the logic. This

aspect can be visualized by the example of the design of a network switch. Each

network link should be handled by the logic independently. Hence in the design, a

module for controlling a link, having an FSM which defines the states of link, can be

instantiated as many times as there are links. All instances will run in parallel

allowing the processing of data on all the links at the same time.

30

There are a lot of ready to use components, developed by the FPGA manufacturers,

third party companies and open source community, which can be instantiated in a

design. Intellectual Property Cores (abbr. IP Cores) are building blocks from which

an entire design can be built with addition of user logic. All FPGA hardware elements

like memory or DSP blocks, gigabit transceivers etc. are accessible to the developer

via instantiation of appropriate core. Most standard functions can be found as IP

Cores, especially when it comes to communication protocols. FPGAs need external

ÄÅÖÉÃÅÓ ÉÎ ÏÒÄÅÒ ÔÏ ÒÅÃÅÉÖÅ ÄÁÔÁ ÔÏ ÐÒÏÃÅÓÓ ÏÒ ÔÏ ÔÒÁÎÓÆÅÒ ÒÅÓÕÌÔÓ ÏÕÔȢ 4ÈÁÔȭÓ ×ÈÙ ÔÈÅ

knowledge of modern data transmission standards and protocols is required in

order to build an operational design.

3.3 $ÅÓÉÇÎ &ÌÏ× ÁÎÄ -ÅÔÈÏÄÏÌÏÇÙ

Developing FPGA logic is a different process than writing high level procedures that

are executed sequentially on a CPU. The fact that the written code is translated not

into a sequence of low level assembler commands but into a representation of basic

electronic components included in an FPGA, requires a totally different approach.

The developer needs to know the internal structure of the device for which the logic

is being written as well as how the compiler will translate the code into

Initial state

is the setup ready?

PERFORM TASK 1

YES

Is task1 finished?

NO

PERFORM TASK 2

YES

Problem solved?

YES

NO

Final state

NO

Figure 10: Example of a state machine composed of 4 states including initial and final

states. The transitions between states happen in case defined conditions are met.

31

configuration of Slices in logic blocks. The compilation is a very sophisticated set of

processes, executed one by one in order to create a final bit file containing

configuration of each CLB in a target FPGA device.

Efficient FPGA design process flow presented on Figure 11, requires several steps to

be performed before configuring the device. The entire code in a design contains

parts which are platform independent and parts which are strongly tied with an

actual target FPGA modeÌȢ 4ÈÁÔȭÓ ×ÈÙȟ ÁÓ ÔÈÅ ÓÔÁÒÔÉÎÇ ÐÏÉÎÔȟ ÔÈÅ ÄÅÖÅÌÏÐÅÒ ÎÅÅÄÓ ÔÏ

get to know the exact FPGA structure as well as all the external devices mounted on

the PCB which will be used in the design. Knowing these details, one can define the

interface of top entity that is mapped into FPGA pins connected to peripherals. The

mapping is realized by including a constraints file, which pairs the port of the

interface with a pin of the FPGA.

The code in the source files needs to be compiled into representation of basic logic

components like gates, multiplexers, adders etc. This process is called synthesis and

is independent from the target device. The result of synthesis is a netlist which can

be displayed graphically as a schematic of the translated logic. Compiling the code

into a netlist is a straight forward procedure of converting VHDL statements into

logic functions and connecting registers. This process introduces different levels of

optimization in order to remove redundant or unused parts of the logic. At first all

the registers which outputs are not connected in the netlist are being removed.

Second step is the minimization and simplification of generated logic functions, a

process similar to Karnaugh method (21). The last step is the merging of redundant

logic parts.

Figure 11: Detailed design flow. Firmware development requires multiple iterations of

the cycle consisting of several levels of compilations (left column) and verification of

the results using different tools (right column). [xilinx.com]

32

The generated netlist (example presented on Figure 12) is a starting point for

further compilation steps but also for the first stage of debugging. The correct design

flow suggests running behavioral simulation prior to implementing design.

Behavioral simulation helps finding bugs in the logic functions and verify if the

translation done by the synthesizer is correct. Simulation (sample output presented

on Figure 13) can be run for selected component only or for the top entity, which

means the whole logic in the design will be processed. As the VHDL components

describe the manipulation of input signals, the simulation needs some kind of

description, how those input signals work. Such description is called a stimulus

vector and is included in a testbench. It is also a VHDL component, which has an

instance of a component under test and some processes that describe each input

port of that component. In a testbench, one can use VHDL statements, which are not

synthesizable by the compilation process. Those commands are useful in

description of the signal in function of time. Commands like wait for [time unit] will

be compiled by the simulation tool as a pause between executing the next statement.

The use of wait commands changes the standard VHDL process into a set of

commands executed sequentially. What is important to mention is that the

testbench process will be only executed by the simulation tool, hence on the

standard CPU. The operating system running on a CPU has the means of measuring

ÔÉÍÅȟ ÔÈÁÔȭÓ ×ÈÙ ÔÈÅ ×ÁÉÔ ÓÔÁÔÅÍÅÎÔÓ ÁÒÅ ÐÏÓÓÉÂÌÅ ÔÏ ÕÓÅȢ 4ÈÅÒÅ ÉÓ ÎÏ ÓÕÃÈ ÆÅÁÔÕÒÅÓ

while implementing a design on an FPGA, which is the reason why such statements

are not synthesizable. The simulation will feed the described input signals to the

component under test ports and calculate its response during a specified period of

time. The calculation occurs with a time step (usually 1 ps), evaluating the state of

all components, logic gates, flip flops etc. included in the design. In order to verify

the behavior of the component during 1 ns, simulation tool will recalculate the state

of all elements 1000 times, which is a large computational effort. The key to a

successful simulation is the preparation of stimulus vector. In order to find potential

Figure 12: Netlist of a counter running on input clock CLK and presenting the output

on LEDs, the code has been synthesized into an adder module and a flip flop with

feedback connection.

33

bugs, a well-designed vector should contain some randomized parts, which would

cover all the possible states of input ports. Only when the response of the component

under test is correct for all those states, the component can be qualified for further

implementation steps.

When the results of simulation prove the correctness of designed logic, the

developer can proceed with design implementation. Because the implementation is

a process of fitting and placing the netlist in an FPGA, this process is strongly

dependent on the target device. That means that the result can be used only on a

device type specified in the project settings. First step is the translation, which

converts the netlist generated by synthesis into set of elements included in the

actual device. This stage is needed as the synthesis, being platform independent

process, can be realized by software from different providers, while implementation

software can only be provided by the manufacturer of the FPGA. When the translator

converts the general netlist into a set of components available in a target device, the

processes that will place those elements around the chip are mapper and place and

route (abbr. PAR). At first the mapper is recognizing all the components included in

the design as hardware elements in the FPGA and tries to locate them. The placing

can be forced by the developer using statements in the constraint file, which locks

components to specified location in the FPGA array. Not specified elements are

distributed all over the device by some placing algorithm. The algorithm tries to

create the shortest paths possible between all the configured CLBs. Once placed,

logic is then process by PAR. Its task is to adjust the placement of components in

such a way that all timing constraints are met. The timing constraints are essential

in order to properly communicate with external peripherals (typical situation

presented on Figure 14). The user defines the frequency of the clocks used in the

design as well as setup and hold times of certain signals. The delays introduced by

the routing of elements inside the FPGA can violate the timing specifications of

protocols used between the chip and the peripherals. Those specifications need to

be well defined by the developer in the constraint file, then the PAR algorithm can

place the logic in such a way that the calculated delays are within some declared

Figure 13: Example of 80ns simulation output result. Stimulus vector describes the

clock ticks on the input port, for each tick an internal signal is incremented and its

value is presented on the output port.

34

margins. The operation of PAR algorithm can be adjusted in terms of area covered

by the logic or most timing efficient placement.

The output of the entire implementation process is a detailed description of each

CLB and any other hardware component configuration in the target FPGA structure.

Successful PAR run assures there are no violations of timing on essential data paths

and all the design components are placed in valid locations. The verification of

timing aspects of the design can be done by checking the generated reports

describing the longest paths and potential problematic connections. This

information can also be used for timing simulation. The simulation performed after

synthesis does not take into account any timing issues of the design (assumes zero

delays), it works only on Register Transfer Level (abbr. RTL) level, which is useful

for validating correctness of logic functions. Timing simulation process, extends the

behavioral simulation by adding all the calculated during PAR timing information.

Iterations between simulation and implementation processes are needed in order

to achieve timing closure of the design. Once the logic is verified and correctly

implemented, one can generate a bit file, which is a binary file containing

configurations for each element in target FPGA. It is a translation of PAR results into

binary format. A bit file can be then loaded into an FPGA. Once the device is

programmed, the developer has to verify by his means if the wanted functionality is

properly executed. Last years, major FPGA manufacturers developed a system of in-

circuit verification, which allows to check the operation of the logic running on a

programmed FPGA device. The integrated logic analyzer can be used to display the

selected internal signals in a function of time, triggered by some defined condition

or manually at any time. This is the last step in debugging the design. In case a wrong

way of operation was found which needs a change in the logic, the entire design flow

Figure 14: Visualization of timing requirements for output signals. Valid data offsets

in respect of clock signal provided to an external device has to be constrained for

proper operaton of PAR algorithm and production of design with secured timing.

[xilinx.com]

35

cycle has to be repeated from the first step. As the place and route algorithms are

not deterministic, often guided by pseudo random number generators, each run and

more importantly each change in the entry point of the design can result in

ÕÎÐÒÅÄÉÃÔÁÂÌÅ ÉÍÐÌÅÍÅÎÔÁÔÉÏÎ ÒÅÓÕÌÔÓȢ 4ÈÁÔȭÓ ×ÈÙ ÉÔ ÉÓ ÓÏ ÉÍÐÏÒÔÁÎÔ ÔÏ ÐÒÏÐÅÒÌÙ

constrain the design and verify each step of the procedure with the simulations and

reports lecture.

3.4 #ÏÍÐÁÒÉÓÏÎ ÔÏ #05Ó ÁÎÄ '05Ó

High-performance computing is a fast evolving branch of hardware development

imposed by demands coming from various markets like science, banking, consumer

electronics etc. Technology and physics limitations reached in transistor

ÍÉÎÉÁÔÕÒÉÚÁÔÉÏÎ ÉÎ ÐÒÏÄÕÃÔÉÏÎ ÐÒÏÃÅÓÓȟ ÆÏÒÃÅÄ ÔÈÅ ÑÕÅÓÔÉÏÎÉÎÇ ÉÆ ÔÈÅ -ÏÏÒÅȭÓ ÌÁ×

(22) is still applicable. While single cored CPUs reached their peak performance

achieved through core complexity and clocking frequency, products combining

multiple cores in a single chip emerged. Multicore approach introduced new

possibilities in data processing but also new software and firmware constructs that

could efficiently make use of such architectures. In response to specific demands,

three main families of specialized computing units are now existing on the market.

Multicore CPUs are general purpose processing devices, with several complex cores.

GPUs feature few orders of magnitude more cores, which are optimized for complex

ÁÒÉÔÈÍÅÔÉÃ ÏÐÅÒÁÔÉÏÎÓȢ 0,$Ó ÁÒÅ ȰÅÍÐÔÙȱ ÄÅÖÉÃÅÓȟ ×ÈÉÃÈ ÁÌÌÏ× ÔÈÅ ÄÅÖÅÌÏÐÅÒ ÔÏ

design its internal architecture according to specific requirement.

3.4.1 Architecture

Multicore CPUs (Figure 15) are encapsulating several processors in one chip

together with additional memory and controlling mechanisms. In consumer

products it is often to find an additional graphic processor. A single core is an

independent processing unit with its own scheduler, registers, Arithmetic and

Logical Unit (abbr. ALU) and cache. The communication and synchronization

between cores is achieved by shared memory and the CPU controller. Each core is

sequentially processing instructions from Complex or Reduced Instruction Set

(abbr. CISC and RISC) defined by the chip producer. The bottleneck of fast clocked

ÃÏÒÅÓ ÉÓ ÔÈÅ ÍÅÍÏÒÙ ÁÃÃÅÓÓȢ 4ÈÁÔȭÓ ×ÈÙ ÔÈÅ ÄÅÐÅÎÄÅÎÃÅÓ ÂÅÔ×ÅÅÎ ÔÈÒÅÁÄÓ ÒÕÎ ÉÎ

parallel on separate cores should be minimized in order to achieve maximum

computing efficiency.

36

Different architecture is presented by GPUs (Figure 16). High number of smaller,

specialized cores is targeted to perform similar operations multiple times. Single

Instruction Multiple Data (abbr. SIMD) approach is based on delivering different

data to a set of threads, each one executing same kind of instructions. In case of

GPUs, a single core consists of many ALU units, equipped with local cache. Those

ALU units are grouped into so called warps, and they work on single instruction with

separate data sets. It is an advantage for processing fine grained independent

problems. In order to assure best performance of computation, the amount of

operations distributed for each thread in a single warp should be even, which is a

programmatic challenge. The software is divided into parts performed by GPUs and

a part executed on CPU, which prepares and delivers data to the GPU platform.

Programmable Logic Devices (Figure 17), as described at the beginning of this

chapter, are left for the developer to design their internal architecture. Large arrays

of configurable components, together with additional hardware infrastructure can

be configured to perform specified tasks. The amount of resources available in

current devices, allows parallelized and pipelined data processing in real time. Lack

of predefined architecture and set of instructions allows to design highly optimized

solutions. Low level, basic, bit-wise operations provided by logic blocks are

inefficient for floating point operations, which is the limiting factor in use cases of

PLDs in computing.

Figure 15: Internal die architecture of Intel Core i5 3570K processor. There are four

visible cores, a separated graphic processor unit, cache memory shared between all

components and various IO controllers. [intel.com]

37

Fundamental differences in the architecture of those three types of computing

devices categorize them for being applicable for specific kind of tasks. Multicore

CPUs are efficient for solving complex problems which can be divided into few

functional threads with mixed instruction sequences. The GPUs best perform

calculating very high number of same operations with different datasets on each

thread. The structure of PLDs offers unique performance for real time applications

and online, parallel data processing with limited arithmetic operation set.

Figure 16: Internal die architecture of Nvidia GeForce GTX 280 graphic processor unit.

There are four visible arrays of processor cores as well as buffers and memory

components. [Nvidia.com]

Figure 17: Internal structure of Altera Stratix FPGA. Most of the device is occupied by

array of Slices. Additional resources like RAM blocks, DSP blocks are distributed around

the device while the high speed transceivers are located at the edges. [altera.com]

38

3.4.2 Example Application - Random Number Generator

In depth performance comparison was studied in many available publications.

Important aspect is the selection of an algorithm that is possible to be implemented

on all kind of devices. In High Energy Physics, Monte Carlo simulations are the basic

tool for preparation for experiments. Those simulations are well parallelizable

problems which are strongly based on Random Number Generators (abbr. RNG).

The quality of those generators affects the simulation results. The publication (23)

is covering different RNG algorithms and their implementations on CPUs, GPUs and

FPGAs. Several algorithms for uniform, Gaussian and exponential generators were

implemented and compared in terms of performance, which is number of samples

delivered per second using all resources possible on selected devices. FPGA

architecture presents an advantage of performing bit-wise operations

simultaneously on all Slices available. This feature is especially useful for uniform

algorithms where no high level arithmetic operations are required, hence the entire

logic can be implemented on Slices structure. For other algorithms, the limiting

factor is the need of DSP and RAM blocks, which amount is limited and data access

introduces additional latency. Implementations on GPUs require wise selection of

algorithm in order to take advantage of SIMD and warp thread structure. To

efficiently distribute the work over the available threads, it is important to take care

of equalizing algorithm paths in such a way that the amount of warp threads waiting

for the slowest one is minimized. CPUs take advantage of well defined, developed

over long period of time and verified algorithms, which are executed on devices that

are being run at very high clock frequencies. The very low number of parallel

threads in comparison to other platforms, definitively makes them the slowest

solution. It is important to notice, that in those tests the time needed for data

transfer and the communication latency are not taken into account, just the raw

number of generated numbers per second.

Figure 18: Comparison of peak performance of random number generators on different

platforms. (23)

39

The table above (Figure 18) shows that the FPGA implementations outperformed

the other platforms, especially in case of uniform distribution. Similar performance

to GPU is only in case of Gaussian random generator. GPU implementations present

an order of magnitude faster sample delivery than an ordinary CPU. Also in terms of

power consumption, the FPGA devices are the most efficient solution. The platforms

used for the purpose of this measurement were: CPU ɀ Intel Core2 QX9650, GPU ɀ

NVidia GTX 280 and FPGA ɀ Xilinx xc5vlx330.

40

41

4 $!4! !#15)3)4)/. 3934%-
!2#()4%#452% "!3%$ /.
5.)6%23!, 2%!$/54
"/!2$3

The subject of this thesis is the entire concept of the trigger and data acquisition

system based on universal readout boards Trigger Readout Board v2 (abbr. TRB2)

and its successor Trigger Readout Board v3 (abbr. TRB3). Both solutions were

developed in cooperation of many institutions, with key developers from GSI

Helmholtzzentrum Darmstadt and Jagiellonian Univeristy in Cracow. The

architecture of the TRB boards and details of their construction are given in Sections

4.3 and 4.4.

The main motivation was to design a platform consisting of hardware, firmware and

software out of which readout systems of various scale requesting distributed data

processing could be constructed. Thus, the key features of the TRB platform are:

scalability, extensibility , flexibility and reconfiguration. Those points were achieved

by the design of a system based on interconnected in a tree architecture, identical

base modules with extension cards (Add-on boards) for various measurements (for

example ADC). Such modules provide vital functionality like signal digitization with

feature extraction, data transmission, control mechanisms and hub features, which

allow to introduce further modules and expand the system. However one should

keep in mind that extension should preserve the performance characteristics, while

the number of modules increases. The additional modules are needed in order to

42

introduce a higher number of input channels, a new type of measurement or data

processing that is not provided by the base module. Such approach led to creation

of a fully universal platform for a broad range of measurement systems, which is

reflected by the amount of various users and high demand for this solution.

Detailed description of the system is presented in the next sections. By showcasing

its architecture and main components, the concept of TRB platform is introduced.

Both, the hardware and firmware are described with a strong emphasis on

communication features, which were implemented by the author of this thesis and

are of key importance for the system architecture. The in-depth analysis of the

system performance can be found in Chapter 6, where two setups are evaluated.

4.1 3ÙÓÔÅÍ !ÒÃÈÉÔÅÃÔÕÒÅ

The system is composed out of two main logical elements: endpoints and hubs. They

both can exist as hardware components or as firmware modules. The endpoints are

the elements in the system that perform signal digitization and some kind of

processing, which results in generated data. Each endpoint has to be connected to

one port of the hub, through which it can receive readout requests and control

commands from the central controller. Through the hub connection, the endpoint

can also transmit its data portion. Each module connected to a hub acts as an

endpoint to that hub. Such approach masks the complexity of the system and returns

it as a really scalable platform. One can always connect a new hub to an existing and

therefore, open several additional slots for new endpoints (which, in turn could also

be hubs etc.).

Central
HUB

HUB HUB
Endp. Endp.

HUB HUB

Central
Controller

Endp. Endp.

Control
Module

D
O

W
N

S
T

R
E

A
M

U
P

S
T

R
E

A
M

Figure 19: A schematic view at the tree architecture of the system. The central hub is a

root of the tree and branches consisting of another layers of hubs and endpoints are

derived. The central controller and control modules communicate with the rest of the

system through the central hub. The data flow directions are marked by the arrows:

messages sent from the central point to the endpoints flow downstream, while responses

from the endpoints flow upstream.

43

The elements of the systems are composed in a tree hierarchical architecture

(Figure 19). There is one root module which is the central hub. From this point

several branches can be driven, each consisting of hubs and endpoints, which are

leafs. The central hub distributes the readout requests coming from the central

controller and control messages from the control module. Those messages flow in

downstream direction, from the source to the endpoints. The responses generated

by the endpoints flow in upstream direction. As the endpoints are treated as

independent from each other, there is no communication channel between them in

a horizontal direction. The hubs can distribute messages from its root to its

endpoints or collect messages from the endpoints and forward them to the root.

Such architecture is required in order to perform synchronized measurements.

While each endpoint is processing data independently from the others, a readout

request from the central controller forces all the endpoints to tag the data with the

current, centrally generated readout number marker (trigger tag) and transmit the

data out of the system. Data fragments tagged with the same number can be then

combined into structures representing the state of the processing in the whole

system in a precise moment of time.

The TRB platform provides a base module, which can act as a hub and/or as an

endpoint. Depending on the loaded firmware, the board can realize all the above

described functions: contain endpoint modules that provide data, an instance of the

hub, a control and a central controller modules. It means that the smallest system

can be built out of a single board, which is convenient for small setups. This high

flexibility in the usage of the base module could be possible thanks the FPGA devices.

While the hardware remains the same and provides the infrastructure, the exact

function of a board is defined by the loaded firmware.

The base module also provides a support for Add-on boards, which can extend its

measurement and processing functionality. Those extension boards require only the

connection to the hub instance in the base module in order to become an endpoint

of the system. This concept results in a highly extensible system. The development

of new elements, compatible with the system requires only the implementation of a

proper endpoint interface.

It is worth to remind that the terms endpoint and hub exist as both: dedicated

hardware modules and also as firmware components. This allows for development

of structured firmware with well -defined functionality distribution and common

interfaces. It applies also to the protocol used for inter-electronics data exchange as

well as for the inter-components communication in the firmware.

Data processing can be executed on each layer of tree structure. The endpoints are

data sources, with some logic resources for basic feature extraction and which can

transmit the collected data only in the upstream direction. They are also equipped

with readout buffers which can store data until arrival of the of the readout request.

44

The data path can go through the layers of hubs or alternatively exit the system at

any point that features external network gateway. Hubs closer to the root of the

system deal with larger subsets of data, collected from underlying layers. It is both:

an advantage because more complex algorithms can be executed there but also

possible bottlenecks can occur, which have to be addressed by the proper system

configuration, because increasing data subsets can emerge. The algorithms that

introduce some additional latency to the real time data path increase the dead time

of the system. The base modules are equipped with gateways to the external

network, through which the collected data can exit the system. Therefore, the

systems has to be properly designed for each application, depending on the imposed

processing requirements.

An example of TRB platform application (Figure 20) is a data acquisition for a

general DAQ system consisting of N detectors. The system can consist of various

detector types that need to be simultaneously digitized and the results need to be

stored in output buffers. The signals coming from different detectors require

different handling, therefore the system has to feature various endpoints providing

the requested measurement and processing capabilities. The concept of Add-on

modules in TRB platform realizes this point. The core of the system remains

Detector Type 1

Detector Type N

...

FEE Type 1

FEE Type 1

FEE Type N

FEE Type N
...

GbE

G
b

E

SCTRL
...

Figure 20: Schematic view of the system architecture applied for detector readout.

Signals from different detectors are connected to the appropriate front-end

electronics, which outputs are digitized and processed by the endpoints. Inter-TRB

communication shares three logic channels: data readout (purple), slow control

(orange) and trigger distribution (red). The blue elements combine detector specific

hardware, while the green modules are common platforms. The violet arrows show the

gateways for external networks.

45

the same, while only the Add-on modules need to be developed or adapted for

specific applications.

The process of collecting data from detectors is controlled by the central controller

of the system, connected to the central hub. The endpoints digitize and process the

data in the real time according to their local algorithms and store the data in readout

buffers. At some point, the central controlled issues a readout request command,

which is distributed through all the hubs in the system to the endpoints, directing

them to forward buffered data to the external network gateways. After sending this

request, the system enters busy state. It is the time when no further readout

requests can be issued, until all the endpoints report their readiness, which usually

happens after freeing up the buffers. During this period of time, the system is not

capable of recording new events. Proper implementation of buffering mechanism

can reduce the dead time, but it is not possible to avoid it completely. The time since

issuing the readout request and receiving all the busy release messages is the dead

ÔÉÍÅ ÏÆ ÔÈÅ ÓÙÓÔÅÍȟ ÔÈÁÔȭÓ ×ÈÙ ÉÔ ÉÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ËÅÅÐ ÉÔ ÁÓ ÌÏ× ÁÓ ÐÏÓÓÉÂÌÅȢ

4.2 #ÏÍÍÕÎÉÃÁÔÉÏÎ 0ÒÏÔÏÃÏÌÓ

A crucial part of the presented architecture are the communication protocols which

were applied to provide data transmission capabilities between the system

components (Figure 21). Two main functionalities were distinguished and

appropriate protocols were implemented basing on specific requirements and

available resources. The first protocol is used for controlling the readout process by

distributing the readout request messages and control commands. It requires the

lowest latency possible, needs to be implemented between the system components

and does not require advanced routing mechanisms. The original TrbNet (24) was

invented and developed as a system specific protocol fulfilling the above

requirements. Different requirements are imposed by the handling of the data

gathered by the endpoints. This data has to exit the system at some point and be

delivered to the servers for further, offline analysis. As they are PC class computers,

a natural choice was to use a well-established standard like Gigabit Ethernet.

4.2.1 TrbNet

Indispensable element of the TRB platform is the TrbNet protocol (25). A dedicated

network protocol, developed especially for TRB platform is used for three main

purposes: distribution of readout requests, readout data transport and exchanges of

the slow control messages. The protocol is independent from media interface, which

means it can run on lines between devices on a PCB, optical fibers, copper cables and

any other communication media. It requires two lines per connection as it can run

only in full duplex mode needed by the handshake mechanism.

46

One link is shared over all three functionalities. It means that one physical link

contains three logical channels: one for trigger, one for data and one for slow control.

It is very important that the protocol assures lowest latency possible on readout

request distribution channel, which is crucial for proper synchronization and

operation of the system. It is realized by prioritizing the types of messages. Readout

requests has the highest priority, then comes the data readout and slow control at

the end which is the least timing dependent channel.

Transmission is realized in a form of fixed-length, 80 bit packets of different types

like header, data, end of block, termination and acknowledge. Each transmission

consists of exchanging at minimum one header, one data and one termination

packet. If there is much more data to transmit, it can be divided into several blocks

and then end of block packet is used in order to separate them. In order to keep the

latency low, it is important to avoid large data transfers and divide large portions of

data into several parts. In such way, the packets containing readout requests can be

injected in the middle of the ongoing transmission. After each block, the receiver

sends an acknowledgment packet in order to assure the reliability of the connection.

Packets contain a calculated CRC which is checked by the receiver. Depending on

situation the packet can be marked as containing error or retransmission is

requested. Such mechanism is especially needed in highly radiated locations, which

can lead to Single Event Upset (abbr. SEU). Those can often happen, when the

TrbNet

GbE

Figure 21: Schematic view of the networking in the DAQ system. The TRB boards

communicate with each other through optical connections running TrbNet protocol

(blue). The readout of the collected data, as well as slow control from PCs is performed

on Gigabit Ethernet links (orange). Some Add-on boards are capable of transmitting

GbE directly. The Gigabit Ethernet connections from the electronics, enter the

infrastructure, composed of network switches, which distributes readout data to the

event builders and then to permanent storage as well as assures the slow control

interface.

47

electronics are mounted close to the detectors and can even lead to complete de-

synchronization of the link.

Each physical TrbNet channel is composed of several elements, symmetric for the

receiver and the transceiver. Media interface is the lowest, physical layer. It

implements the link access, low level data encoding like 8b/10b and the mechanism

ÏÆ ÂÉÔ ÔÒÁÎÓÐÏÒÔ ÁÎÄ ÒÅÃÅÐÔÉÏÎ ÏÖÅÒ ÔÈÅ ÌÉÎËȢ)ÔȭÓ Á ÃÏÍÐÏÓÉÔÉÏÎ ÏÆ ÈÁÒÄ×ÁÒÅ

transceiver and firmware that controls it. The next element, which is included in

each TrbNet node is the endpoint. The firmware that handles and decodes the data

is static and common to all implementations. The data received on the media

interface is passed to the multiplexer which recognizes the type of the incoming

packet and redirects it to the appropriate I/O buffer. There are three I/O buffers,

ÏÎÅ ÆÏÒ ÅÁÃÈ ÌÏÇÉÃÁÌ ÃÈÁÎÎÅÌȢ 7ÈÁÔȭÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÎÏÔÉÃÅ ÉÓ ÔÈÁÔ ÔÈÅ ÂÕÆÆÅÒÓ ÁÒÅ

located after the multiplexer. This is requested in order to assure the lowest latency

and bottleneckɀfree way of readout request packets delivery. After each buffer,

there is a handler designated for specific type of packet, which decodes the payload

and delivers the data on the output interface for the user to process it further. The

mechanism for transmission works in the exactly same way and the data passes

through all those elements in the reversed order.

4.2.2 Gigabit Ethernet

While TrbNet is a reliable and fast protocol, its drawback is that it can only be

implemented on custom electronics and that it features functionality which is not

needed for the basic data transmission. That is why Gigabit Ethernet (15) has been

chosen as the protocol used for transmitting the collected data out of the system. It

is a well-established on the market standard in modern telecommunication systems.

The hardware needed for constructing a network is cheap, easy to access and

standard PCs are usually equipped with needed Network Interface Cards (abbr.

NICs) together with well -verified drivers and software, supported by the large

manufacturers.

The network environment of the DAQ (Figure 4) systems in most of the applications

can be treated as Local Area Network (abbr. LAN). It is characterized by the fact that

those systems consists of many interconnected devices, exchanging large amount of

data between each other, with limited communication outside defined sub-

networks and located in a specified area. They are a mix of passive nodes, that only

transmits gathered data out to a defined destination, and nodes that require

communication in both directions as well as a mix of custom electronics and

standard, market-available devices. Those are the reasons of choosing the TCP/IP

protocol suite as a set of protocols running over Gigabit Ethernet networks. For the

Transport Layer, two most common protocols are used: TCP and UDP. Depending

on the setup and needed functionality, those two are complemented by a set of

network discovery and other helper protocols.

48

In the described TRB platform, the TrbNet protocol is used only for inter-electronics

communication. When it comes to transmitting data out of the system, the Gigabit

Ethernet is introduced at all the hardware modules equipped with appropriate

devices. It is important to enable the data exit the system at any point in order

reduce bottlenecks and to keep the TrbNet links available for readout requests and

control messages. In case it is not possible, that readout data is passed via TrbNet to

the first module that has a gateway to GbE network.

The GbE gateways gather data coming from connected endpoints and compose UDP

packets that are transmitted to the offline analysis servers. Although the protocol is

not reliable and does not guarantees the delivery of uncorrupted data it is much

more suitable for implementation as FPGA logic and features lower overhead due to

reduced headers set than TCP. Some sort of reliability can be restored by a proper

design of the network infrastructure, which has been proven to be sufficient, even

for large scale setups.

The Gigabit Ethernet Module is described in detail in Section 4.5.

4.3 3ÙÓÔÅÍ #ÏÍÐÏÎÅÎÔÓ

The entire system is composed of many modules, specialized to perform a given task

or type of measurement. The main element is the TRB board which acts as a support

for the extension modules and provides basic functionalityȢ ,ÅÔȭÓ ÆÉÒÓÔ ÔÁËÅ Á ÃÌÏÓÅÒ

look at TRB2 (Figure 22) (26), which is still widely used in many setups.

Figure 22: Schematic view of the TRB2 platform. Two main processing elements are

the Virtex4 FPGA and the EtraxFS processor. The first one is connected to all the

peripherals, including HPTDCs, while the Etrax assures the Ethernet gateway to the

system network (26).

