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Various scale measurement systems are composed of the sensors providing data 

through the data acquisition system to the archiving facility. The scale of such 

systems is determined by the number of sensors that require processing and can 

vary from few up to hundreds of thousands. The number and the type of sensors 

impose several requirements on the data acquisition system like readout frequency, 

measurement precision and online analysis algorithms. The most challenging 

applications are the large scale experiments in nuclear and particle physics. 

This thesis presents a concept, construction and tests of a modular and scalable, 

tree-structured architecture of a data acquisition system. The system is composed 

out of two logical elements: endpoints which are the modules providing data and 

hubs that concentrate the data streams from the endpoints and provide connectivity 

with the rest of the system. Those two logical functions are realised by the base 

modules called Trigger Readout Board (abbr. TRB) which feature basic 

functionality: digitization of the signals, communication with other modules and 

external networks, control and monitoring mechanisms. This set of functions can be 

extended on the modules via a system of Add-on boards that introduce new features 

and allows to adapt the platform for various applications. 

The key characteristics of TRB based system are: scalable, flexible, extensible and 

reconfigurable. The scalability of the platform is realized by the hub components, 

which allow to create tree structures with many layers, each opening new ports for 

additional endpoints, without reducing the performance of the entire system. The 

TRB boards are based on FPGAs, which are reconfigurable, programmable logic 

devices. This approach results in a possible use of the same hardware module for 

different functions with just a change of the firmware. It also allows to introduce 

new functionalities over time. Together with the Add-on system, the platform can 

be relatively easily adapted to various applications and extended with new 

elements. 

The platform was developed inside the HADES Collaboration with significant 

contribution from the author. The HADES detector was also the largest target 

application and was used for extensive tests of the system. Several conducted 

experiments and laboratory tests described in this thesis confirm the design and 

allow to evaluate the system performance. The platform has also found application 

in various other systems, one of them being the J-PET medical imaging project also 

described in this thesis.  
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3ÙÓÔÅÍÙ ÐÏÍÉÁÒÏ×Å ÒĕŀÎÅÊ ÓËÁÌÉ ÓËčÁÄÁÊä ÓÉö Ú ÃÚÕÊÎÉËĕ× ÄÏÓÔÁÒÃÚÁÊäÃÙÃÈ ÄÁÎÅ 

poprzez system akwizycji danych do infrastruktury ÁÒÃÈÉ×ÉÚÕÊäÃÅÊ. Skala takich 

ÓÙÓÔÅÍĕ× ÊÅÓÔ ÏËÒÅĢÌÁÎÁ ÐÒÚÅÚ ÌÉÃÚÂö ÃÚÕÊÎÉËĕ× ×ÙÍÁÇÁÊäÃÙÃÈ ÐÒÏÃÅÓÏ×ÁÎÉÁ É 

ÍÏŀÅ ÓÉö ×ÁÈÁç ÏÄ ËÉÌËÕ ÄÏ ËÉÌËÕÓÅÔ ÔÙÓÉöÃÙȢ Liczba É ÔÙÐ ÃÚÕÊÎÉËĕ× ÎÁËčÁÄÁÊä ÓÚÅÒÅÇ 

×ÙÍÁÇÁď ÄÏÔÙÃÚäÃÙÃÈ ÓÙÓÔÅÍÕ ÁË×ÉÚÙÃÊÉ ÄÁÎÙÃÈȟ ÔÁËÉÃÈ ÊÁË ÃÚöÓÔÏÔÌÉ×ÏĢç ÏÄÃÚÙÔÕȟ 

precyzja pomiaru czy algorytmy analizy w czasie rzeczywistym. Najbardziej 

×ÙÍÁÇÁÊäÃÙÍ Ú ÔÅÇÏ ÐÕÎËÔÕ ×ÉÄÚÅÎÉÁ ÚÁÄÁÎÉÅÍ Óä ÅËÓÐÅÒÙÍÅÎÔÙ ÆÉÚÙÃÚÎÅ ÄÕŀÅÊ 

skali. 

W tej pracy zaprezentowana jest koncepcja modularnej i skalowanej architektury w 

ÐÏÓÔÁÃÉ ÄÒÚÅ×Á ÓÙÓÔÅÍÕ ÁË×ÉÚÙÃÊÉ ÄÁÎÙÃÈȢ 3ÙÓÔÅÍ ÓËčÁÄÁ ÓÉö Ú Ä×ĕÃÈ ÌÏÇÉÃÚÎÙÃÈ 

ÅÌÅÍÅÎÔĕ×ȡ elementy ËÏďÃÏ×ÙÃÈȟ ËÔĕÒÅ ÄÏÓÔÁÒÃÚÁÊä ÄÁÎÅ oraz ËÏÎÃÅÎÔÒÁÔÏÒĕ×ȟ 

ËÔĕÒÅ ÏÄÂÉÅÒÁÊä ÓÔÒÕÍÉÅÎÉÅ ÄÁÎÙÃÈ É ÚÁÐÅ×ÎÉÁÊä ËÏÍÕÎÉËÁÃÊö Ú ÃÁčÏĢÃÉä ÓÙÓÔÅÍÕȢ 4Å 

Ä×ÉÅ ÆÕÎËÃÊÏÎÁÌÎÏĢÃÉ ÌÏÇÉÃÚÎÅ Óä ÒÅÁÌÉÚÏ×ÁÎÅ ÐÒÚÅÚ ÍÏÄÕčÙ ÂÁÚÏwy Trigger 

Readout Board (42"Ɋȟ ËÔĕÒÙ ÚÁÐÅ×ÎÉÁ ÐÏÄÓÔÁ×Ï×ä ÆÕÎËÃÊÏÎÁÌÎÏĢçȡ ÄÉÇÉÔÁÌÉÚÁÃÊÉ 

ÓÙÇÎÁčĕ×ȟ ËÏÍÕÎÉËÁÃÊÉ Ú ÐÏÚÏÓÔÁčÙÍÉ ÍÏÄÕčÁÍÉ ÏÒÁÚ ÚÅ×ÎöÔÒÚÎÙÍÉ ÓÉÅÃÉÁÍÉ ÏÒÁÚ 

mechanizmy kontrolno-ÓÔÅÒÕÊäÃÅȢ 4ÅÎ ÚÂÉĕÒ ÆÕÎËÃÊÉ ÍÏŀÅ ÚÏÓÔÁç ÐÏ×ÉöËÓÚÏÎÙ 

ÐÏÐÒÚÅÚ ÓÙÓÔÅÍ ÐčÙÔ !ÄÄ-ÏÎȟ ËÔĕÒÅ ÐÏÚ×ÁÌÁÊä ×ÐÒÏ×ÁÄÚÉç ÎÏ×Å ÆÕÎËÃÊÏÎÁÌÎÏĢÃÉ É 

ÐÒÚÙÓÔÏÓÏ×Áç ÐÌÁÔÆÏÒÍö ÄÏ ÒĕŀÎÅÇÏ ÒÏÄÚÁÊÕ ÚÁÓÔÏÓÏ×ÁďȢ 

+ÌÕÃÚÏ×ÙÍÉ ÃÅÃÈÁÍÉ ÓÙÓÔÅÍÕ ÏÐÁÒÔÅÇÏ ÎÁ ÍÏÄÕčÁÃÈ 42" Óäȡ ÓËÁÌÏ×ÁÌÎÏĢçȟ 

ÅÌÁÓÔÙÃÚÎÏĢçȟ ÒÏÚÓÚÅÒÚÁÌÎÏĢç ÏÒÁÚ ÍÏŀÌÉ×ÏĢç ÒÅËÏÎÆÉÇÕÒÁÃÊÉȢ 3ËÁÌÏ×ÁÌÎÏĢç 

ÐÌÁÔÆÏÒÍÙ ÚÏÓÔÁčÁ ÏÓÉäÇÎÉöÔÁ ÐÏÐÒÚÅÚ ÚÁÓÔÏÓÏ×ÁÎÉÅ ÍÏÄÕčĕ× ËÏÎÃÅÎÔÒÁÔÏÒĕ×ȟ 

ËÔĕÒÅ ÐÏÚ×ÁÌÁÊä Ô×ÏÒÚÙç ÄÒÚÅ×ÉÁÓÔÅ ÓÔÒÕËÔÕÒÙ Ú ×ÉÅÌÏÍÁ ×ÁÒÓÔ×ÁÍÉȟ Ú ËÔĕÒÙÃÈ 

ËÁŀÄÁ ÏÔ×ÉÅÒÁ ÎÏ×Å ÐÏÒÔÙ ÄÌÁ ÅÌÅÍÅÎÔĕ× ËÏďÃÏ×ÙÃÈȟ ÂÅÚ ÐÏÇÁÒÓÚÁÎÉÁ ÐÁÒÁÍÅÔÒĕ× 

×ÙÄÁÊÎÏĢÃÉÏ×ÙÃÈ ÓÙÓÔÅÍÕȢ 0čÙÔÙ 42" Óä ÏÐÁÒÔÅ ÎÁ ÕËčÁÄÁÃÈ &0'!ȟ ËÔĕÒÅ Óä 

ÒÅËÏÎÆÉÇÕÒÏ×ÁÌÎÙÍÉȟ ÐÒÏÇÒÁÍÏ×ÁÌÎÙÍÉ ÕËčÁÄÁÍÉ ÌÏÇÉcznymi. $ÚÉöËÉ ÔÁËÉÅÍÕ 

ÐÏÄÅÊĢÃÉÕȟ ÍÏŀÎÁ ÕŀÙ×Áç ÍÏÄÕčÕ ÂÁÚÏ×ÅÇÏ ÄÏ ÒÅÁÌÉÚÏ×ÁÎÉÁ ÒĕŀÎÙÃÈ ÆÕÎËÃÊÉȟ 

ÊÅÄÙÎÉÅ ÐÏÐÒÚÅÚ ÚÍÉÁÎö ÏÐÒÏÇÒÁÍÏ×ÁÎÉÁ ×ÂÕÄÏ×ÁÎÅÇÏȢ 4Ï Òĕ×ÎÉÅŀ ÐÏÚ×ÁÌÁ ÎÁ 

×ÐÒÏ×ÁÄÚÁÎÉÅ ÎÏ×ÙÃÈ ÆÕÎËÃÊÏÎÁÌÎÏĢÃÉ Ú ÂÉÅÇÉÅÍ ÃÚÁÓÕȢ 7 ÐÏčäÃÚÅÎÉÕ Ú ÓÙÓÔÅÍÅÍ 

ÐčÙÔ !ÄÄ-oÎȟ ÔÁËÉÅ ÒÏÚ×ÉäÚÁÎÉÅ ÐÏÚÁ×ÁÌÁ ÎÁ ÓÔÏÓÕÎËÏ×Ï čÁÔ×Å ÚÁÁÄÁÐÔÏ×ÁÎÉÅ 

ÐÌÁÔÆÏÒÍÙ 42" ÄÏ ÒĕŀÎÙÃÈ ÚÁÓÔÏÓÏ×ÁďȢ 

0ÌÁÔÆÏÒÍÁ ÚÏÓÔÁčÁ ÒÏÚ×ÉÎÉöÔÁ ×Å×ÎäÔÒÚ +ÏÌÁÂÏÒÁÃÊÉ (!$%3 ÐÒÚÙ ÚÎÁÃÚäÃÙÍ 

×ËčÁÄÚÉÅ ÁÕÔÏÒÁȢ $ÅÔÅËÔÏÒ (!$%3 ÂÙč Òĕ×ÎÉÅŀ ÄÏÃÅÌÏ×ÙÍ ÚÁÓÔÏÓÏ×ÁÎÉÅÍ ÓÙÓÔÅÍÕ 

i ÚÏÓÔÁč ÕŀÙÔÙ ÄÏ ÐÒÚÅÐÒÏ×ÁÄÚÅÎÉÁ ÒÏÚÌÅÇčÙÃÈ ÔÅÓÔĕ× ÓÙÓÔÅÍÕȢ Szereg 

ÐÒÚÅÐÒÏ×ÁÄÚÏÎÙÃÈ ÅËÓÐÅÒÙÍÅÎÔĕ× oraz testy laboratoryjne potwierdzaÊä projekt 

ÁÒÃÈÉÔÅËÔÕÒÙ ÏÒÁÚ ÐÏÚ×ÁÌÁÊä ÎÁ Å×ÁÌÕÁÃÊö ×ÙÄÁÊÎÏĢÃÉ ÓÙÓÔÅÍÕȢ 0ÌÁÔÆÏÒÍÁ ÚÎÁÌÁÚčÁ 

Òĕ×ÎÉÅŀ ÚÁÓÔÏÓÏ×ÁÎÉÅ × ×ÉÅÌÕ ÉÎÎÙÃÈ ÁÐÌÉËÁÃÊÁÃÈȢ *ÅÄÎä Ú ÎÉÃÈ ÊÅÓÔ ÐÒÏÊÅËÔ *-PET, 

tomoÇÒÁÆÕ ÄÏ ÏÂÒÁÚÏ×ÁÎÉÁ ÍÅÄÙÃÚÎÅÇÏȟ ËÔĕÒÙ Òĕ×ÎÉÅŀ ÚÏÓÔÁč ÕÊöÔÙ × ÔÅÊ ÐÒÁÃÙȢ 
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Modern, large scale measurement systems and real time data processing facilities 

require the design and development of efficient platforms, which aim is to process 

multiple data streams in parallel and deliver the product to a final archiving 

destination. Such platforms are being widely used in the industry sectors like 

automotive, aerospace, energetics and consumer electronics but also in science 

fields like medical imaging and experimental physics. Taking for example the ATLAS 

experiment (CERN, Switzerland) (1), commonly known as the largest detector 

system ever built on Earth, it features more than one hundred million analog 

channels that have to be precisely measured, in a synchronized way. The data has to 

be processed, analysed in the real time and reduced by filtering the unimportant 

data, treated as noise, before reaching final location.  

The scale of those projects impose the development of dedicated platforms, fine-

tuned for fulfilling the very high requirements in terms of the precision, readout 

speed and channel density. The commercially available standards like VME (2) or 

CAMAC (3) are difficult to scale and their costs are significant. This thesis presents 

a hierarchical system based on a universal base module called Trigger Readout 

Board (abbr. TRB) (4) , originally designed for the High Acceptance DiElectron 

Spectrometer (abbr. HADES) at GSI, Germany (5). The base module features 

connectivity and data processing functionality as well as measurement mechanisms 

provided by dedicated extension modules. Such high flexibility could be achieved by 

the use of custom electronics equipped with Field-Programmable Gate Array (abbr. 

FPGA) reconfigurable, programmable logic devices (6). The base modules can be 

connected in a tree, hierarchical architecture, which provides high scalability, which 

is crucial for various applications.  

The intention of this work is to present a complete, modular and scalable system for 

a streamlined data processing in the real time regime. The development consists of 
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many aspects, starting with definition of the system architecture, specification of the 

electronic modules, together with the base module TRB, implementation of the 

firmware for FPGAs, definition of custom communication protocols and data 

structures, up to the implementation of the software needed to control and to 

monitor  the acquisition process. The system is an alternative for standardized many 

ÙÅÁÒÓ ÁÇÏ ÁÒÃÈÉÔÅÃÔÕÒÅÓȟ ×ÈÉÃÈ ÉÎ ÔÏÄÁÙȭÓ ÁÐÐÌÉÃÁÔÉÏÎÓ ÐÒÅÓÅÎÔ ÌÏ× ÓÃÁÌÁÂÉÌÉÔÙ ÁÎÄ 

functionality, thus not applicable for modern measurement systems, also because of 

the still remaining high costs. The proposition of a high performance platform, 

ÃÏÍÐÌÉÁÎÔ ×ÉÔÈ ÔÏÄÁÙȭÓ ÓÔÁÎÄÁÒÄÓ ÉÎ ÔÅÒÍÓ ÏÆ ÄÁÔÁ ÐÒÏÃÅÓÓÉÎÇ ÁÎÄ ÔÒÁÎÓÍÉÓÓÉÏÎȟ 

universal and flexible enough to be applicable for a wide range of experiments and 

detection systems is a response for the legacy platforms. The success of the 

developed platform is proven by the significant interest in the community and the 

number of various scale applications, to which the system was adapted, both in 

experimental physics and medical imaging device prototypes. The author of this 

thesis participated in this challenging task providing important contributions  to the 

design of the system architecture - implementing various elements of the system, 

adapting the solutions for diverse applications and performing evaluation tests. 

Some of the developed solutions were enclosed in the international patent 

application (7) and published in international journals (8), (4), (9), (10). 

Prior to present the system under discussion, a general introduction to Data 

Acquisition Systems is conducted. The Chapter 2 opens by covering the basic 

elements which are building blocks of a measurement system. It is followed by an 

overview of the concept of triggering and data discrimination. Together with the 

slow control system, presented in the next section, they cover the basic ingredients 

of the Data Acquisition System (abbr. DAQ). The chapter is concluded with 

comparison of different standard DAQ platforms commercially available and a 

discussion about the challenges and requirements facing modern data acquisition 

systems. 

The Field Programmable Gate Arrays are devices ÏÒÉÇÉÎÁÔÉÎÇ ÔÈÅ ωπȭÓ ÂÕÔ ÎÏ×ÁÄÁÙÓ 

experiencing dynamic development. This technology is widely used in modern 

measurement systems, hence the entire Chapter 3 is dedicated to presentation of 

the device structure and methodology of firmware development. A brief 

introduction of VHDL (11), as the hardware description language used for 

implementing the logic, is included as well as a section where the FPGAs are 

compared to other computing platforms in order to visualize the differences in their  

architectures which are essential for DAQ applications. 

The body of the thesis is enclosed in Chapters 4 and 5. The first one describes in 

details the proposed architecture of the data acquisition system, which is under 

discussion. The focus is on the network communication and data transmission 

realized by the implementation of Gigabit Ethernet Module (Section 4.5) and on the 

new TRB3 platform (Section 4.4) which was the original contribution of the author 
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of this thesis. The Chapter 5 covers main applications, where the elements of the 

system are used under various forms. The description of HADES experiment is a 

showcase of the entire, large-scale system setup. In contrary, the J-PET application 

shows how the components can be applied to smaller setups with different 

requirements.  

Chapter 6 encloses results of measurements of the platform performance. Both a 

laboratory setup and the real applications are tested in terms of scalability issues, 

data throughput and readout rate, which are the key characteristics of the system 

architecture. 

The work is concluded with a chapter summarizing achieved results and opening a 

discussion about possible improvement of specific components and mechanisms. 
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Automation of many processes requires the use of various sensors. One of such 

applications are advanced, industrial production lines. They operate autonomously 

by processing feedback from devices that monitor a number of characteristics, 

describing the conditions and manufacturing parameters. It is used for both: quality 

assessment and real-time adjustments of production processes. Automation of the 

monitoring can be found in almost all aspects of our lives: from monitoring the 

condition of power plants and delivery lines through massive transportation 

systems, weather, up to something very personal like miniature health monitoring 

devices, that we can carry in our pockets. All those applications complete a standard 

scheme that consists of sensors, measurement devices and electronics with software 

that process gathered data. The sensor detects some physics phenomena and 

converts it into an electrical impulse, which is then digitized by dedicated 

electronics. The result is processed for extracting some interesting feature, 

presenting the result in some form and archiving. The set of electronics, firmware 

and software needed to process the data from the sensors is called Data Acquisition 

System. 

One can distinguish three levels while trying to categorize the DAQ systems. First 

level, would be very heavy duty applications, like systems used in mining, petrol 

facilities or transportation. They are designed to operate at very harsh conditions, 

thus robustness is their key feature. Measurement precision, number of sensors and 

readout frequency is relatively low. The second level is dedicated to applications 

which require moderate precision and readout frequency, while keeping limited 

number of input channels. The most advanced systems, like the ones used in physics 

experiments, impose the highest requirements. The third level is reserved to 
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applications which operate on hundred thousand or even hundred millions of 

sensors that measure with resolutions of single nanoseconds at megahertz 

frequencies. 

All three levels, however, share some common functions. They all need a real-time 

data path from the sensors, through the digitizing device and some sort of 

processing unit. In the units, algorithms used to process data are designed to extract 

features from the incoming data stream and generate triggers that will have 

immediate result on the operation of the system. In applications where information 

loss due to high readout rate is significant, this critical path and processing time have 

to be minimized. The time needed to process a given portion of data, during which 

the system cannot accept any input is called the dead time.  

Each of the levels presents a set of different requirements, which impose the use of 

technologies developed for those dedicated applications. Heavy duty systems are 

often based on Programmable Logic Controllers (abbr. PLC), which are modular 

computers typically used for industrial processes. They can implement real-time 

algorithms, driven by the input ports. More advanced features are presented by 

systems like LabView from National Instruments. Those are complex solutions 

developed for measurement and monitoring systems, instrument control and 

validation systems. They are successfully used for many laboratory applications, as 

small scale, off-the-shelf measurement stations. Although they present versatile 

functionality, their scalability is limited and costs per channel are significant. 

Requirements imposed by applications from the third category, force the 

development of dedicated, custom solutions, fine-tuned for achieving the peak 

performance. 

A particular example and undoubtedly the most advanced in terms of technology 

and demands are systems used in particle physics experiments. Although each 

experiment faces a different aspect, the main structure of their construction is 

common. Usually experiments are located at particle accelerators which boost 

projectiles to a specified energy and then hit either stationary target or other beam. 

The reaction products are measured by a dedicated detector system. The response 

of the detectors is then registered by specialized readout electronics (analog and 

digital) and transmitted to some storage devices for further analysis. Properly 

designed data acquisition system working together with the trigger system (a 

system which makes a decision to store or abandon given reaction event) are key 

elements for the efficient collection of data. 

The system described in this work was designed to collect and process data from 

detectors composing a system for experiments in particle physics, though general 

enough to be applied to any system demanding processing data from some 

electronic sensors. The following description will focus on the overview of 

components required to read out the sensors (hereinafter called detectors) which 

are the state of art devices, developed to measure and register the smallest and the 
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most elusive phenomena humanity could witness so far. This is the reason why the 

DAQ system for such application must follow the especially high requirements. 

Regarding a system architecture, the simplest case scenario is a single channel 

which generally consists of analog (shaper), digital processing units and 

transmission path to the storage unit. Such chain can be extended to larger amount 

of independent channels, by the introduction of additional elements that collect data 

from several sources. The main challenge is however to avoid in the same time 

degradation of the performance in terms of rate capabilities of the system.  The aim 

of reading out the sensors is to transform system response to a physical event, 

classified by the time when it happened, into a set of digital values that represent 

parameters of the response signal that is interesting from the analysis point of view. 

The parameters can be the amplitude of the analog signal, the integrated charge of 

the signal or the time when the signal was generated. The electronic modules that 

create such information are called digitizers e.g. Analog to Digital Converter abbr. 

ADC or Time to Digital Converter abbr. TDC. For example signal coming from a 

typical detector (Figure 1) (e.g. current or voltage pulses) have to be prepared for 

the digitizer  by dedicated analog electronics consisting of several steps like signal 

amplification, signal shaping and in case of TDC comparison with a predefined 

discrimination level (fast discriminator). 

 

Having digital values is already half of the success. Those values now have to be 

transported to some permanent storage for later analysis, which in case of a single 

channel is not a challenge, but in case of complex setups with thousands or millions 

of sensors, the networking becomes state of art. 

Shaper

Digitizer
Collector / 
Transmiter

Analog pulse

Analog pulse

Digital value

Event 
builder / 
Storage

Digital value

Detector

 

Figure 1: Building blocks of a single channel readout chain. A physical event excites the 

detector to generate an analog signal that is processed by shapers, digitizers, data 

collectors and transmitters. The output is saved by Event Builders for offline analysis. 
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In order to fully understand the requirements facing modern data acquisition 

ÓÙÓÔÅÍÓ ÉÎ ÐÈÙÓÉÃÓ ÅØÐÅÒÉÍÅÎÔÓȟ ÉÔȭÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÕÎÄÅÒÓÔÁÎÄ ÐÒÏÐÅÒÔÉÅÓ ÁÎÄ 

demands addressed to all elements of DAQ. The first part of the next section is 

covering all the stages of DAQ chain, describing step by step all its elements, starting 

with different detectors types and the origin of analog signals. Then the concept of 

triggering is introduced as a way of selection and preliminary data reduction. 

Overview of standard, commercially available DAQ platforms is presented in a 

section followed by description of Slow Control. The chapter is closed by a section 

that aggregates the challenges facing the design and development of a typical 

acquisition system. 

 

2.1 $ÁÔÁ !ÃÑÕÉÓÉÔÉÏÎ 3ÙÓÔÅÍÓ 

Large scale physics experiments use various types of detectors to gather the 

maximum amount of possible interesting information from a single physical event. 

Each type of the detector represents a specific reaction to a given radiation type (e.g. 

charge particles, neutrals (photons, neutrons)) and its conversion into output signal, 

which in general is an electrical impulse. Those responses depend on the type of 

detector and reactions, thus each detector has to be equipped with a specifically 

designed readout chain. All such subsystems have to be combined at some point into 

one unified system. The entire chain can be divided into functional parts, which will 

be described below, starting from the detector itself up to the final storage device. 

2.1.1 Detectors 

There are few main characteristics (12) which describe general characteristics and 

capabilities of a particle detector: 

 

¶ Sensitivity 

Detector materials and its construction is selected to be sensitive to a given 

ÔÙÐÅ ÏÆ ÒÁÄÉÁÔÉÏÎ ÁÔ Á ÓÐÅÃÉÆÉÅÄ ÅÎÅÒÇÙ ÒÁÎÇÅȢ !Ó ÉÔȭÓ ÔÈÅ ÆÉÒÓÔ ÃÏÎÓÉÄÅÒÁÔÉÏÎ 

while selecting a detector type, it influences most of the following points. 

 

¶ Type of detector response 

Usually the information that a reaction happened in a detector or not is not 

ÅÎÏÕÇÈȢ )ÔȭÓ ÁÌÓÏ ÉÍÐÏÒÔÁÎÔ ÔÏ ËÎÏ× ÔÈÅ ÅÎÅÒÇÙ ÄÅÐÏÓÉÔÅÄ ÉÎ ÔÈÅ ÄÅÔÅÃÔÏÒ 

material and/or the time of arrival by the hitting particle. In terms of 

electrical response, this is reflected as the integrated charge of the output 

signal or as its amplitude and/or time when the signal crosses predefined 

discrimination level. 

 



9 

 

¶ Energy, time resolution 

This parameter defines the capability of the detector to distinguish different 

energies deposed by the particles and the time of arrival. The smaller is the 

measured difference in case of two identical signals, the more useful is that 

information.  

 

¶ Response function 

Response function define the shape of the output signal that is generated by 

the given particle (e.g. electron, muon, pion etc.). Good knowledge of the 

response function is essential in order to distinguish between particle 

species and defines conditions on quality of detector electronics. 

 

¶ Response time 

This factor is very important and strongly connected with the next point, the 

dead time of DAQ. Under a strong irradiation, the rate of physical event which 

have to be properly handled by the detector is very high. The response time 

is the time that the detector materials and analog electronics spend on 

constructing the output signal. The more time it takes, the higher is the 

probability that it will register another reaction, leading to the mix-up of 

both, which is called a pile-up effect.  

 

¶ Dead time 

This parameter describes the time needed by each part of the detection 

ÓÙÓÔÅÍ ÔÏ ÐÒÏÐÅÒÌÙ ÐÒÏÃÅÓÓ ÔÈÅ ÅÖÅÎÔȢ )ÔȭÓ ÓÔÒÏÎÇÌÙ ÒÅÌÁÔÅÄ ÔÏ ÔÈÅ ÒÅÓÐÏÎÓÅ 

time and influences detector efficiency. 

 

¶ Detector efficiency 

The most relevant measure of the detector quality and its suitability for a 

given reaction to register. Taking into account all the previous parameters, 

this one is the number of properly registered events compared to the number 

of emitted events by the source.  

2.1.2 Front-End Electronics 

The parameters described above have to be taken into account while designing the 

Front-End Electronics (abbr. FEE). The shape of the output signal is driven by each 

element of the detector such as used materials, gas mixture or distribution of high 

voltage. The detectors are adjusted to generate a proper output signal in case of a 

given type of reaction in order to eliminate noise. Usually the signals are very fast 

(width of order of several to tens of nano seconds) and can be small (amplitudes of 

millivolts  on 50 W). Therefore it is required to design the Front-End Electronics, 

which will prepare those signals for digitization process. The nature of the signals 
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ÆÏÒÃÅ ÔÈÅ ÕÓÅ ÏÆ ÖÅÒÙ ÆÁÓÔ ÐÒÏÃÅÓÓÉÎÇ ÓÙÓÔÅÍÓȟ ÔÈÁÔȭÓ ×ÈÙ ÔÈÅ ÆÁÓÔȟ ÁÎÁÌÏÇ ÃÏÍÐÏÎÅÎÔÓ 

are used at the stage of amplification and shaping. 

The Front-End Electronics act as the interface between the response signal from the 

detector and the characteristics of the proper input for the digitizers. The transfer 

function (transformation from the input to the output signal) of the FEE has to be 

defined depending on the type of the measurement (whether it is time, charge or the 

amplitude): 

¶ Amplitude or charge measurement 

Applications where the shape of the signal is analyzed, require very well 

defined output signals. That is why the electronics are equipped with 

amplifiers and shapers. First ones adjust the amplitude of the signal to the 

acceptable amplitudes range of the digitizer. Shapers are used in order to 

emphasize some characteristics of the signal (e.g. long rising edge of the 

signal required for taking several samples). 

 

¶ Time measurement 

A very fast discrimination technique is required in order to separate the 

signals from noise. Discriminators compare the amplitude of the input signal 

to the applied threshold level and in case the signal is large enough, an 

impulse is created on the output of the device. The time difference between 

this impulse and some reference signal is the exact result of the 

measurement. The quality of the discriminator defines the time jitter of the 

output as a response for the same input signal as well as the time needed for 

generating the response (longer time leads to larger dead time). 

2.1.3 Digitizers 

When designing the entire data acquisition system, the first thing to start from is the 

nature and the characteristics of the response signal from all the detectors that need 

to be read out. Next step is the selection of the digitizing device suitable for the 

wanted kind of measurement. Such devices work properly when the input signal 

parameters fit into some range of values. For this reason the raw, output signal from 

the detector is passed through analog electronics, as described in the previous 

section. Usually, the larger, longer and better shaped signals are easier to digitize 

thus generating a more accurate result. On the other hand, preparing a longer signal 

takes time, which increases dead time of the readout, which in turn might reduce 

ÔÈÅ ÅÆÆÉÃÉÅÎÃÙ ÉÎ ÃÁÓÅ ÏÆ ÈÉÇÈ ÒÅÁÃÔÉÏÎ ÒÁÔÅÓȢ 4ÈÁÔȭÓ ×ÈÙȟ ÅÁÃÈ ÓÃÅÎÁÒÉÏ ÈÁÓ ÔÏ ÂÅ 

analyzed individually and the best balance between wanted result accuracy, overall 

efficiency and usually the cost per channel has to be worked out. It is preferable to 

perform digitalization as soon as possible (closest to the detector) as the digital data 

is less affected by noise interference. The measurement devices can be grouped by 

the aspect of the analog signal that they observe. 
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¶ Analog to Digital Converters (abbr. ADC)  

ADC are devices (13) that generate a series of digital values that approximate 

the input, analog signal. There are different ways of converting the input 

voltage into a digital value. The basic idea consists of a chain of comparators, 

where each one has a different threshold applied, distributed with an even 

step. Applying an input voltage which is inside the range defined by the 

thresholds of the comparators, some of them will respond with an active 

signal, meaning that the input voltage was higher than the applied threshold. 

Such a measurement is called quantization, repeated at high frequency is 

called sampling process and results in digital representation of the analog 

signal in a function of time (example of sampling ADC output on Figure 2). 

The above described solution forms a device called sampling ADC. Another 

approach to that matter is the integrating ADC, which instead of comparing 

the input analog signal, first passes it through a capacitor that collects carried 

charge and measures its value. 

 

There are several parameters that define the quality of a single measurement 

performed by the ADC. Of course the resolution and the sampling rate are the 

most relevant ones. Resolution is defined by the amount of comparison 

points of the analog value (e.g. number of comparators to which input voltage 

is applied). The higher resolution, the more accurately digital value will 

represent measured voltage. Time distance between two consecutives 

samples is called sampling rate. Large number of samples collected in a short 

 

Figure 2: Reconstruction of analog signals from Electromagnetic Calorimeter for 

HADES experiment of different amplitudes (different colours), measured with 

sampling ADC. The X axis represents number of sample, which is also marked by dots 

on the plots, the Y axis represents mV of measured signal at the sampling point. (49) 
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period of time, gives a possibility to recover the shape of the analog signal. 

The error in measurement is introduced by several elements in ADC devices. 

The most important is obviously its resolution but also the nonlinearity of 

consisting elements and general noise toleration are strong factors. 

 

¶ Time to Digital Converters (abbr. TDC) 

Applications like time of flight measurement in tracking detectors require 

devices that can precisely measure the time elapsed between two events. 

Technology of time measurement has made a huge step forward last years, 

improvin g the resolution to single picoseconds using digital TDCs (14) 

implemented in Field Programmable Gate Arrays (6). Time to Digital 

Converters make use of the fact that signal propagation through electronic 

elements requires some time. By creating a chain of such elements and 

injecting a pulse inside, one can estimate how wide was that pulse or what 

was the time distance between two signals (Figure 3). The smaller is the 

delay introduced by a single element the better is overall time resolution. 

There are of course several obstacles that need to be considered. All elements 

composing a single delay chain should have the same signal propagation 

time, any deviation of the mean value is called Differential Non Linearity 

(abbr. DNL) and is a main factor lowering the resolution of the measurement. 

What is worse is that those parameters can change due to temperature or 

input voltage fluctuations during the run time. Some techniques exist that can 

help reducing this problem, one of those is the wave-union method, which 

involves performing several measurements on one delay chain, using one 

input signal.  

 

 

Figure 3: Structure of a single channel of TDC implemented in FPGA logic. Amount of 

delay elements traversed by the input signal is translated into period of time. 

Histogram on the right  represents a time difference measurement of two 

photomultipliers used for JPET tomograph prototype. The achieved time resolution is 

125ps which include the detector response fluctuations and front-end module jitter. 
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2.1.4 Data Concentrators, Networking and Event Building 

The readout of a single detector channel can be successfully realized with a digital 

oscilloscope which contains the above mentioned measurement devices. When it 

comes to high energy physics experiments, their scale can be overwhelming. Taking 

HADES as an example (which is a medium sized experiment), it consists of 7 detector 

subsyÓÔÅÍÓȟ ÓÕÍÍÉÎÇ ÕÐ ÔÏ ÔÏÔÁÌ ÏÆ ψπȟπππ ÁÎÁÌÏÇ ÃÈÁÎÎÅÌÓȢ )ÔȭÓ Á ÔÒÕÅ ÃÈÁÌÌÅÎÇÅ ÆÏÒ 

the DAQ and network designers to assure that the data transport will be reliable and 

fast enough. Each channel has to be shaped, measured, marked with its coordinates 

in the system and then transported to event building computers. Data collection 

takes place on several stages, as well on hardware level (ADCs and TDCs usually 

have several input channels) as on logic (data from a number of digitizers forms 

larger blocks, which are treated as entities). The data concentration in the DAQ 

readout chain is performed up to a stage when the data can exit the digital 

electronics and enter a standardized network via a network gateway, leading to the 

event builders. The number of concentration steps depends on the type of hardware 

used in the system and the systems architecture. Analysis algorithms implemented 

in hardware might require data from a selected sectors or detector subsets. The data 

from single channels must be therefore properly grouped, marked, packed and 

delivered to the component running analysis. In case of systems without online 

hardware analysis features it is preferable to forward the data to the network 

gateways as soon as possible, as it reduces the costs, complexity level of the system 

and the dead time. 

Concentrators are also used in the opposite direction, not only gathering data 

coming from the detectors but also distributing the trigger and slow control 

information. Trigger system (see next section) is required to control the process of 

the entire readout. The trigger information, under different forms (in some systems 

it is just an analog impulse and in the others it is a data packet) must be delivered to 

all the endpoints of the DAQ, including Front-End boards. The concentrator facility 

can be used to transport that information in the downstream direction. It is the same 

situation when it comes to slow control. Slow control gives access to the settings of 

the components in the system from a central point and to monitor state of its 

components. It is crucial to have a possibility of configuring the system and adjusting 

its operation according to given experiment conditions. The same infrastructure can 

be used in order to transmit, broadcast and gather configuration settings from the 

system components.  
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All those three functionalities (data readout, trigger and slow control distribution) 

require data to cross between two or more different subsystems (Figure 4). The DAQ 

electronics need to transfer readout data to the Event Building machines, the Slow 

Control commands generated on a supervisor PC need to be sent to certain DAQ 

Endpoints and the Trigger information has to be delivered to all the components. 

Having many interconnected subsystems that exchange data between modules 

requires a unified network infrastructure. As the industrial telecommunication 

sector is expanding, there are many out of the box solutions available at the market. 

The only requirement is that all the subsystems have to be equipped with network 

gateways applying a chosen standard. Nowadays, the Gigabit Ethernet (15) is a 

commonly found solution in many existing experiments. It is a well-known, easy to 

implement and verified standard with affordable equipment.  

Event building is a task of reconstructing an entire event from all the small pieces of 

ÄÁÔÁȟ ÃÏÍÉÎÇ ÆÒÏÍ ÄÉÆÆÅÒÅÎÔ ÓÏÕÒÃÅÓ ÉÎ ÔÈÅ ×ÈÏÌÅ ÓÙÓÔÅÍȟ ÉÔȭÓ ÔÈÅ ÌÁÓÔ ÓÔÅÐ ÏÆ 

concentration. Depending on the system architecture and the online analysis 

algorithms, the reassembly can be realized either in the hardware or by the event 

building computers. In cases where the data from the entire system is needed for an 

online algorithm, the concentration has to merge all the parts and deliver an entire 

event to that stage. In other cases, algorithms are performed locally, on a subset of 

data coming from a given subsystem, hence the event building combines those local 

parts together into a single unit. Moreover, the raw detector data is often extended 

Event Builders

Slow Control
Interface

DAQ 
Endp.

DAQ 
Endp.

DAQ 
Endp.

DAQ 
Endp.
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DAQ 
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Figure 4: Scheme of the DAQ components interconnections with subsystems. DAQ 

Endpoints (digitizers, active FEEs, etc.) communicate through several layers of 

concentrators and network with Event Building machines, Slow Control computers 

and a Trigger System. 
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by the results of the online algorithms, which have to be properly attached to a 

correct event data. 

Hardware event building is expensive and difficult to implement. The data has to be 

reassembled, stored in buffers and transmitted as a whole unit to the storage 

devices. The main problem is the buffering and memory needed for such online 

processing. It is usually avoided in applications, where there is no requirement of 

analyzing entire events on the hardware level. Preferably the small data parts are 

being sent from the DAQ electronics, through the network to the event building 

machines. Although, high fragmentation can lead to overloading the receiving 

computers. 

Event building machines come in form of powerful, often server class computers 

with multi -processor support, high speed network interfaces and large disk space. 

Those requirements are crucial in order to receive and store data streams from the 

DAQ system. The data is stored temporarily on local hard drives before it is 

transferred to some permanent storage.  As all the data from experiments has to be 

accessible at any time by physicists, it is required to use technologies that are 

reliable and robust. One of such is the storage on magnetic tapes which is an 

expensive and slow medium but gives the best results as permanent storage. It 

should be noted that, the data volume from a single run of a medium-sized 

experiment can reach up to dozen petabytes, which have to be stored for unlimited 

amount of time. 

2.2 4ÒÉÇÇÅÒ 3ÙÓÔÅÍÓ ÁÎÄ $ÁÔÁ $ÉÓÃÒÉÍÉÎÁÔÉÏÎ 

The rate of physical events taking place in a detector system is very high in 

comparison to the rate of events really interesting for the physicists. An example 

that is usually brought up is the Large Hadron Collider (abbr. LHC) constructed at 

CERN facility. The event rate (16) expected for the operational energy settles at level 

of ρπ events per second, while the Higgs Boson is due to appear only once per 

second. That means that for such a case, all the other events are not valuable from 

the physics point of view and are treated as noise. The mechanism of selecting 

events that are supposed to contain important information is called triggering and 

is crucial for an efficient operation of the entire experiment. Trigger systems are 

hierarchical mechanisms that preform data filtering on several stages, passing to the 

next stage only data which was proven positive for passing the tests. Each trigger 

stage introduces more advanced method or algorithm to select only valuable events. 

Those systems are very efficient in reducing the amount of data that needs to be 

processed by the entire system, but also help physicists by providing them cleaner 

data, with less unimportant, noise events. On the other hand there is a risk of 

rejecting valuable data. The trigger mechanism introduces a latency which can 

result in a dead time and lower overall rate of detectors readout, thus resulting in 

data loss. The online analysis algorithms require time to perform which enforces the 
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buffering of the data at the early stages. Taking high rates into account, those 

processes always result in lowering the overall efficiency of the system, but deliver 

more valuable events. 

4ÈÅÒÅ ÉÓ ÁÌÓÏ ÁÎ ÁÌÔÅÒÎÁÔÉÖÅ ÁÐÐÒÏÁÃÈȟ ×ÈÉÃÈ ÄÏÅÓÎȭÔ ÍÁËÅ ÕÓÅ ÏÆ ÔÒÉÇÇÅÒ ÓÙÓÔÅÍȟ 

instead it uses a more advanced discrimination mechanisms. An example of such 

system is the design of PANDA data acquisition system (17), where data is taken 

continuously and is buffered in the DAQ electronics, waiting until the readout signal 

arr ives, which happens with a fixed frequency. The data organized in time epoques 

is then transferred to powerful computer farm for the event processing with several 

alternative trigger algorithms. Such approach is called trigger-less system and 

depends on discrimination power of data at the earliest stage possible and powerful 

network capabilities allowing the transport of data representing the detectors state 

over an entire period of time.  

As the detectors and front-end electronics work continuously processing analog 

signals into digital data, the trigger signal can be treated as the signal that selects 

which data should be passed to the next stage of the readout chain. Usually some 

crucial parts of detectors are being analyzed in terms of response existence and put 

through some Boolean function. An example of such approach is the multiplicity or 

coincidence triggers, which activate the readout only in case the amount of detector 

channels that have produced a proper response is higher than some limit. Of course 

there exist solutions combining different approaches together, creating a tailored 

solution for a given experiment requirements. 

Higher trigger levels often include pattern recognition algorithms, which can be 

implemented in FPGA devices or on GPUs. This assures the minimum dead time and 

allows highly parallel solutions. An example of such algorithms is the recognition of 

detector channels that fired forming some kind of geometry figures like straight 

lines or circles as it is the case in Ring Imaging Cherenkov Detector (abbr. RICH) 

detectors type (Figure 5). 

 

 

Figure 5: An example of an event collected with RICH (37) detector in HADES 

experiment. Colored pixels represent cells in the detector which fired, surpassing 

thresholds. One can notice ring shaped clusters that represent photons.  
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2.3 3ÌÏ× #ÏÎÔÒÏÌ 

Another key element of the DAQ system is the ability to control its elements. Such 

subsystem, called Slow Control System (abbr. SCS), requires hardware facility, 

firmware and software allowing to configure parameters of the readout process and 

permanently monitor its behavior. Hardware needs to be equipped with some sort 

of network interface. Hence the firmware on the electronics also has to support the 

selected protocols and communication standard. In modern systems, the basic 

channel for Slow Control is the Gigabit Ethernet connection. It features individual, 

broadcast or multicast addressing and routing capabilities which allow to 

communicate with selected elements of the system. An important aspect is also the 

fact that basic networking knowledge is enough to write software for sending and 

receiving Slow Control commands from the PC level. 

There are systems which mix the communication standards in order to reduce 

required hardware and use efficiently the existing components. An example of such 

system is the HADES DAQ, described in more details in section 5.1. Slow Control 

commands are being sent from the controlling PC over Gigabit Ethernet links to the 

first GbE gateway of the system. It is usually the first concentrator board. At that 

stage the Ethernet packet is transcoded into custom, inter-electronics 

communication protocol TrbNet, originally developed for the system presented in 

this thesis, and is transmitted further to the endpoint with the use of optical TrbNet 

connection. The protocol offers three logical channels with following functionalities: 

readout request distribution, data readout and Slow Control. 

Most of the programmable electronics components of the system, present a set of 

registers which can be grouped into two main groups: status and control. The status 

registers allow to check the state of different components in the module (e.g. 

transmitted bytes counter, received trigger signals counters etc.). This is used 

mainly for the monitoring process. The control registers are used in order to alter 

the default configuration of the modules. Through those registers, one can for 

example enable or disable data channels, set the thresholds on inputs etc. 

The ability of remote control of the elements as well as wide spectrum of available 

functionalities through the registers is crucial for efficient use of the modules. The 

Slow Control System has to be designed in a modular way that facilitates the process 

of including new components and functionalities. This has to be assured by both the 

firmware, which exposes multiple registers and software that allows the 

configuration of those registers in a human friendly manner. As the DAQ systems 

are getting more complex, most of the monitoring, online statistics and 

configuration processes are being executed automatically by the Slow Control 

software, but has to give the ability for the operator to access those values at any 

time. 



18 

 

2.4 /ÆÆȤÓÈÅÌÆ $!1 ÁÎÄ 4ÒÉÇÇÅÒ 0ÌÁÔÆÏÒÍÓ 

There are several commercial standards which were developed throughout the 

years, which unify some of the basic building blocks of DAQ and trigger systems. 

Such platforms provide standardized and modular solutions for building complex 

systems. They are based on a concept of a crate, which provides power, cooling and 

interconnection for a number of modules that can be inserted inside. Modules are 

designed to perform the basic functions of DAQ systems, like discriminators, 

digitizers or controllers. By connecting them together, one can build a complete data 

acquisition chain. The main advantage of such approach is that there are ready, out 

of the box modules, which are reliable and supported by the manufacturer. The 

drawback is that the modules are designed to work in a wide spectrum of 

applications and are not tailored for the exact type of detector or signal and have 

limited scalability possibilities. 

The first and the simplest standard was introduced in 1968 by the U.S. Atomic 

Energy Commission. Nuclear Instrumentation Module (abbr. NIM) (18) 

standardizes the size, cabling, power supply and the backplane pinout. The modules 

perform very simple tasks like signal discrimination, coincidence, logic functions 

etc. Even though, they are not interconnected and cannot be controlled 

programmatically, they are widely used in some parts of modern experiments, 

which do not require the processing of digital data. For instance NIM modules can 

be successfully used for generation of low level trigger based on coincidence, thanks 

to its robustness and fast analog signal processing. 

Low level functionality and manual operation of NIM modules led to development 

of a new solution which could be connected to computers. Computer Automated 

Measurement and Control (abbr. CAMAC) (3) was introduced in 1972 and was the 

first standard of readout electronics that could be controlled by computer, providing 

automation of the entire data collection process. Like NIM, standard describes the 

mechanical characteristics of modules, electrical standards and backplane pinout. 

CAMAC extends NIM functionality by communication features, which allows the 

transfer of digital data. The modules are working in a slave-master mode. Each crate 

should be equipped with a Crate Controller, a module that act as an interface with 

controlling computer and a bridge to access each module individually. The Crate 

Controller is called master while all the other modules are slaves. The system can be 

easily scaled for higher number of creates by the use of module called Branch 

Highway, which allows to connect several creates together.  
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Fast growth of scales of physic experiments and of computing power, quickly 

exceeded the bandwidth offered by the CAMAC standard, which became obsolete. 

Its place was taken by developed in 1981 Versa Module Europa (abbr. VME) bus (2). 

This standard has also found its place in industry which resulted in development of 

a high number of modules implementing versatile functionalities that could also be 

used in science. Faster bus allows transmission of larger amount of data (40 MBps), 

thus increasing channel density that could be processed by a single module. In 

addition, in order to assure backward compatibility, a module that interfaces to 

CAMAC system was developed, which helped in reuse of legacy modules (Figure 6). 

Even though all of the mentioned standards are still being used in most of the 

experiments as some parts of DAQ systems, the scale of detector systems and the 

complexity of required computing induce the development of new solutions. Up to 

now there is no modern standard platform on which the entire readout chain could 

be built. One platform that found its way from the communication industry into 

physic experiments is the Advanced Telecommunications Computing Architecture 

(abbr. ATCA) (19). It offers very high backplane connection speed in full mesh 

architecture, which means that each module in crate can directly communicate with 

any other modules. The main drawback is that as the main purpose of the standard 

was different, there are not many modules with functionality needed for DAQ 

systems available on market. The ATCA standard is used more as platform for 

custom built electronics, providing mechanical support, power supply, cooling 

systems and interconnectivity of modules. 

2.5 -ÏÄÅÌÓȟ 2ÅÑÕÉÒÅÍÅÎÔÓ ÁÎÄ #ÈÁÌÌÅÎÇÅÓ 

In an ideal case, data acquisition system in conjunction with trigger system is 

supposed to process all the events happening in detectors. The reality imposes a 

number of conditions which limit the amount of data that can be processed and 

stored for later analysis. All factors, starting from detector response shaping time, 

time needed for digitization, network throughput and buffering capabilities define 

time needed to process a single event, which in turn determines dead time of the 

 

Figure 6: Three different create standards. From the left side: CAMAC, VME and ATCA. 

[Pictures from www.wiener-d.com, www.pentairprotect.biz/en/emea] 
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entire system. On the other hand, only events considered as candidates for 

containing interesting data should arrive to the end of the readout chain. That is 

important in order to minimize amount of the storage needed and also to facilitate 

the work for physicists who will analyze the data by online filtering, thus reducing 

data volume. 

2.5.1 Models 

The way the systems operate can be categorized as pull or push type of systems. In 

system operating in pull mode, the data is requested to be read out by the trigger 

system. The data is buffered at an early stage and some parts of it are being analyzed 

by trigger algorithms. Positive trigger signal is propagated back and the event parts 

are retrieved from buffers. This architecture is based on very fast trigger mechanism 

and is useful in conditions where most of the events can be easily rejected as noise. 

In opposition, in push architecture, collected data is directly or on fixed rate, 

transferred between data acquisition stages. Each stage introduces higher level of 

filtering mechanism, reducing amount of data that arrives at the end of the chain. 

This solution is efficient in case the decision about the quality of an event is more 

complex, requiring complicated analysis or operating on larger detector areas. 

Depending on the data qualification algorithms, mixed systems also exist, where 

initial phase of acquisition is accomplished in one type of architecture and further 

processing is realized by the other type. 

Designing architecture of the data acquisition systems is a complex balance between 

the capabilities of readout electronics, online data analysis computational 

complexity, possible network infrastructure and the requirements imposed by 

physicists on wanted data quality. DAQ system concepts should be simulated prior 

to taking final decision about their architecture. Models describing data flow in a 

system are based on mechanisms specified by queueing theory (20). Single 

fragments of the entire readout chain can be treated as queue instances represented 

in Kendall notation as: 

ρ Ⱦ ς Ⱦ σ Ⱦ τ 

Where [1] stands for the time distribution of incoming elements into the queue, [2] 

is the time distribution of processing an element by a single service, which amount 

is represented by [3]. The way elements from the queue are selected to be processed 

[4] can be either one of: FCFS (First Come First Served), LCFS (Last Come First 

Served) or randomly selected. In case it is not specified in the formula, FCFS is 

assumed by default. For instance a primary task of a collector board is to collect data 

from several links, encapsulate with some headers and forward to further stages on 

a single link. For a single event, the data fragments are arriving on the input links 

with different time offsets [1], forming a queue. The process which takes that data 

and forms an outgoing packet is a single service [3]. As all data fragments can have 

various sizes, the time needed for its processing is also a variable [2]. The process 
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forms a packet by taking input fragments as soon as they arrive, thus the queue type 

is FCFS [4]. 

2.5.2 Requirements and Challenges 

As most of the electronics are nowadays equipped with programmable devices, the 

main weight on the capabilities and efficiency of the system is imposed on the 

firmware and software development. The detectors are able to generate enormous 

amount of data, thus designing a DAQ system is always about finding a proper 

balance between the achievable throughput, the measurement resolutions and the 

final amount of data with reasonable signal to noise ratio. 

Designing a data acquisition system is extremely difficult. The experiments take 

sometimes dozens of years to develop. Taking into account the pace of evolution of 

technology, some functionalities that are not available at the beginning of the R&D 

phase can become common throughout the years. That is the reason why, the 

programmable devices are widely used in the DAQ electronics. It is easier and 

cheaper to develop new firmware than to produce new electronic components. 

It is also almost impossible to predict how the entire project will develop over the 

time. Thus the architecture of the DAQ system has to be extensible and flexible 

enough in order to include new modules and functionalities introduced during the 

operation time. To get most of the detector systems, they have a diverse physic 

program foreseen to perform over the years. It is important to have a DAQ system 

that can be adjusted for efficient data collection under different conditions imposed 

by the specific experiment.  

The first constraints about the data quality are submitted by physicists and their 

physic goal. This depends on the type of collision they want to register and the type 

of the detectors used in the system. Different intensities derive directly the hit rate 

on the detectors. The wanted type of collision can be selected with a trigger system 

and reduce the rate of the events that are processed by the system. The range of the 

accepted events rate is the first aspect that has to be taken into account. The second 

aspect is the desired digitalization resolution and channel density. More precise 

measurement results in larger amount of digital data that has to be processed by the 

system. 

In order to achieve the maximum available data throughput in the system, many of 

its components have to be properly designed and implemented. At first the digitized 

data is captured in buffers and waits for the readout request. The efficient use of 

available memory resources is crucial for minimizing data loss and so called event 

mixing when it comes to high rates. Data loss can happen when the defined buffers 

overflow, which can be a cause of backpressure generated by busy subsequent 

components in the system. Thus, real time processing with minimum latency is 

required to be implemented on critical paths. To avoid event mixing, a situation 
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when parts of different events are combined together and memory is organized in a 

form of queues, usually FIFOs. Synchronized around the entire system write and 

read operations on such memory blocks allow to keep collection and reassembly 

process in order.
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The main difference between standard processor and a programmable logic device 

(abbr. PLD) is that their internal structure is not fixed. Taking standard CPUs as an 

example, one can run a program which will be executed on the internal 

infrastructure of logic components. Programming logic devices means describing 

and defining this infrastructure. Instead of fixed structure, PLDs consist of arrays of 

general logic blocks, which can be configured individually. Using a Hardware 

Description Language (abbr. HDL) and a dedicated compiler, the abstract logic 

functions described by the developer are translated into series of logic blocks 

configured and interconnected accordingly.  

There is a lot of various programmable logic devices available nowadays on market. 

They can be classified under different aspects like reprogramming, available 

resources, configuration holding etc. We will focus only on two main families of 

devices: Complex Programmable Logic Devices (abbr. CPLD) and Field 

Programmable Logic Devices (abbr. FPGA), which are most commonly used PLDs 

categorized as High Capacity Programmable Logic Devices (abbr. HCPLD). The 

aspect that distinguish those two is the non-volatile memory of CPLDs and the 

amount of resources. The internal structure of the chip is constructed differently, 

ÕÓÉÎÇ ÔÈÅ ÓÏ ÃÁÌÌÅÄ ȰÓÅÁ ÏÆ ÇÁÔÅÓȱ ÉÎÓÔÅÁÄ ÏÆ ÃÏÎÆÉÇÕÒÁÂÌÅ ÌÏÇÉÃ ÂÌÏÃËÓ ÆÏÕÎÄ ÏÎ &0'!Óȟ 

allowing once loaded configuration to remain after power cycle. All logic blocks 

building an FPGA lose their configuration and need to be programmed after 

powering up. On the other hand, FPGAs deliver much more complex hardware 

features inside the chip and have the amount of resources higher by several orders 

of magnitude. The programming of FPGAs can be automated by installing a 

dedicated RAM memory holding configuration, which is loaded on startup. Those 
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two aspects separate the use cases for both types. CPLDs are mostly used for simple 

tasks with fixed functionality like interfaces between devices or implementing glue 

logic. Huge amount of resources on FPGAs gives the possibility of implementing 

complex functions and algorithms, hence they are used as system controllers and 

data processors. 

Miniaturization and introduction of 20 nm technology process strongly increased 

the amount of logic resources that could be packed into a single device, while 

keeping reasonable size, price and power consumption. Large jump in logic 

capability attracted a lot of customers from fields like networking technology, data 

processing, military and of course high energy physics. They no longer offer logic 

gates only but also complex hardware elements like high speed transceivers, 

memory blocks, Digital Signal Processing (abbr. DSP) blocks and even built in 

microprocessors platforms like PowerPC or ARM, transforming FPGAs into System 

On Chip (abbr. SoC) solutions. 

High performance capabilities, reconfiguration and relatively low cost are the key 

reasons why FPGAs are often chosen to equip electronics in data acquisition 

systems. The chapter starts by covering the nature and structure of FPGA devices. 

Then the basics of programming language are presented, followed by the 

methodology of working with this kind of programmable devices. The chapter is 

closed by an example of comparison between different computational platforms. 

3.1  &0'! $ÅÖÉÃÅ 3ÔÒÕÃÔÕÒÅ 

The key building blocks of FPGA devices are Slices, grouped by two or more, 

depending on a specific device model. Grouped Slices are forming Configurable 

Logic Blocks (abbr. CLB), which in turn are arranged into large arrays. Each Slice can 

be configured to realize a given, basic logic function like AND, OR etc. of its inputs 

and present the result on its output. Depending on the complexity of the FPGA, the 

construction and the components included in a single Slice differ. They all share 

some basic features (Figure 7) though, which are Lookup Tables (abbr. LUT), 

multiplexers and Flip Flops. Lookup Tables, also called Function Generators store 

logic functions which are selected through configuration process, Flip Flops realize 

synchronization with the clock and the multiplexers select appropriate outputs. This 

set of essential components can be extended by additional adders, RAM blocks or 

carry logic, which can be shared between Slices. Each CLB is interconnected with its 

neighbors, which gives the possibility of implementing any kind of logic functions 

by configuring each element accordingly. 

 



25 

 

 

CLB can process several input signals, through selected basic logic function and 

deliver the outcome signal on its outputs. In order to supply input signals from FPGA 

pins to its interior, there are special IO Blocks. Each general pin can be configured 

as input, output or tristate port. In order to enable such functionality, pins are 

surrounded with clocked registers, which can be adjusted to the selected type of 

electrical standard. A pair of pins can run in differential standard like LVDS, which 

is used in cases where high speed and noise secure transmission is required. 

Configured as input, registers act as buffers registering the state of input signal at 

the clock ticks. In case of output ports, the registers drive the pin with a clocked 

signal provided as its input. More advanced FPGAs present more complex IO blocks 

supplying additional functionality like Serializer-Deserializer (abbr. SERDES) 

modules or delay blocks. SERDES facilitates transmission of entire data words over 

single pins by dividing the word into a sequence of bits. In the other direction, it 

gathers several bits together and presents a recovered word to FPGA internal logic. 

Those modules can run in Single Data Rate (abbr. SDR) or Dual Data Rate (abbr. 

DDR). The difference is in the way that single bits are presented at the output (or 

registered on the input). In case of single rate, the bits change at the rising edge of 

the clock and in case of dual rate, the change occurs both at the rising and at the 

falling edge of the clock signal. The delay block helps adjusting the input data signal 

to the clock signal edges, in order to register its state exactly at the moment of clocks 

state transition. 

Most applications require logic to run synchronously in respect to some clock signal. 

The signal can come from various sources like external oscillator connected to an 

input pin or clock recovered from incoming data stream. The clock distribution to 

all the Flip Flops in Slices is realized by special routing nets. In order to allow the 

different parts of logic to run at different clock frequencies and to optimize the usage 

of resources, there exists many kinds of clock routing net types in a single FPGA 

 

Figure 7: CLB (left) of Virtex II FPGA containing four Slices, each Slice (right) is built 

out of two 4-input LUTs, carry lines and flip-flops. [xilinx.com] 
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chips. Inside an average device, user can find several nets call Global Clocks, which 

should be used by general clocks needed to be distributed all over the device. High 

frequency applications can suffer from delay introduced by long distribution paths. 

Regional Clocks are routed only within some defined regions, usually a single bank. 

They are efficient for logic interfacing with external devices, connected to pins 

located at a given bank. Single design often contains several parts of logic, running 

with different clock frequencies. Having a single clock signal, it is possible to 

generate a number of clock signals with various frequencies by the use of Digital 

Clock Managers (abbr. DCM). It is very important for a developer to properly 

combine those parts together and secure all the clock domains crossings.  

Data processed by an FPGA needs to be buffered for transmissions or stored for 

further manipulations. There exist several solutions which can be applied for that 

purpose. All FPGAs provide some amount of internal memory in form of Memory 

Blocks placed in specified locations between CLBs. Very fast to access (one clock 

cycle to retrieve an entire word) and easiest to use is the main source of memory, 

ÂÕÔ ÉÔȭÓ ÃÁÐÁÃÉÔÙ ÉÓ limited to few or dozen MB per average device. Another way to 

store data is the use of Slices in CLBs as memory cells. One can consume general 

resources and convert it into memory as a tradeoff between the amount of resources 

available for implementing logic and the amount converted to memory. In case the 

capacity is the key aspect, there is no other way, than to access an external memory 

ÃÈÉÐ ÏÒ ÃÁÒÄȢ )ÔȭÓ ÔÈÅ ÍÏÓÔ ÄÉÆÆÉÃÕÌÔ ÔÏ ÄÅÓÉÇÎ ÁÎÄ ÉÍÐÌÅÍÅÎÔ ÓÏÌÕÔÉÏÎȟ ÁÌÓÏ ÍÕÃÈ 

slower than the use of internal memory. The internal memory can be configured in 

various ways. Access type defines if the memory block will be used as standard 

memory (write a data word under a specified address cell) or as a queue (written 

elements are added at the end of a queue). The access operations can be realized 

using one or two ports. In single port memory, write and read operations are 

executed synchronously to one, main clock, while in dual port, each operation can 

be clocked with a different frequency. This is especially useful for passing data 

through different clock domains. 
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Presented above components (Figure 8) are essential for all applications, but 

modern FPGAs feature many additional hardware elements that extend their 

functionality. One of such elements commonly found on nowadays devices is the 

Digital Signal Processing (abbr. DSP) block. Similarly to memory blocks, the DSPs 

are distributed inside an FPGA and can be used to perform intensive 

computationally operations. In order to provide data to or transfer processed data 

out of a FPGA, it is equipped with many Gigabit Transceivers. Standard FPGA pins 

are capable of driving signals up to few Gbps. Gigabit Transceivers are prepared to 

handle data transmission in current communication standards, reaching up to 32 

Gbps for most advanced devices. Those transceivers enable full duplex 

communication in standards like 1/10 Gigabit Ethernet, high speed PCIExpress and 

others. Those link layer protocols can also be found as hardware elements, built in 

FPGA fabric. Another interesting device found inside chips are microprocessors. Full 

featured PowerPC or ARM cores can be accessed from internals of FPGA and can be 

used to perform high level calculations on data received and pre-processed by 

standard logic Slices. 

3.2 0ÒÏÇÒÁÍÉÎÇ ,ÁÎÇÕÁÇÅ ɀ 6($, 

It is crucial to understand the difference between writing executable code for 

standard CPUs and writing a code that represents physical architecture of a system. 

FPGAs do not execute any commands but gets configured to process data from input 

 

Figure 8: Example of Lattice ECP2M FPGA internals, IO blocks can be found on the 

edges, blue blocks are CLBs and red elements are memory blocks [latticesemi.com] 
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pins and present the result on output pins. This is the reason why the family of 

languages used for developing logic is called Hardware Description Language (abbr. 

HDL). Initially they were used for describing entire printed circuit boards, with all 

equipped electronic components and interconnections. First languages were used 

to automate the process of developing new electronic systems. Introduction of ASIC 

and FPGA devices required a way of configuring them by the developers. At the 

beginning they had to be selected and connected by hand logic gates, creating 

schematics which were converted into stream of bits representing the configuration 

of CLBs inside FPGA. In order to elevate the abstraction level and automate this 

process, some of HDL languages were adapted, from which two most popular are 

still in use: Verilog and Very High Speed Integrated Circuits Hardware Description 

Language (abbr. VHDL). As the language used for implementing solutions, which are 

subject of this thesis, we will focus on the second one. 

VHDL focuses on description of logic circuits in a form single entities that realize 

logic functions of signals on its input ports and provide the result on the output 

ports. The set of ports is called an interface. Such entity can be easily pictured as an 

electronic component with its pins as interface and some internal logic, with the 

difference that in case of FPGA this component is just a logical module instantiated 

in an array of CLBs. Module called top entity is the main component that represents 

the entire FPGA (Figure 9). Each port on its interface is mapped into a physical pin 

of the chip. All other entities can be instantiated inside top entity, what makes the 

hierarchical structure of the VHDL code. 

A single entity describes the relation between its input signals and output ports. 

Such relation can be basic (e.g. logical conjunction of several inputs presented on 

one output port) or complex, where input signals pass through logic functions, 

embedded hardware FPGA components or instances of other entities. Apart from 

interface ports, each entity can define a number of internal signals, local to its 

instance.  
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Figure 9: Example of structure of a top entity with ports and instances of other 

components in the interior interconnected by some logic. 



29 

 

Relations between signals are written as statements in a form of assignments or 

processes. Assignments are asynchronous basic logic functions and connections 

between signals. Asynchronous logic is realized without the use of Flip Flops, which 

means that in case when one signal drives another, the second one will change its 

state after a short delay, which is equal to the sum of delays introduced by 

electronics components on the path between CLBs in which the signals are stored. 

)ÔȭÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÎÏÔÉÃÅ ÔÈÁÔ ÓÕÃÈ ÁÓÓÉÇÎÍÅÎÔ ÉÓ ÎÏÔ Á ÃÏÍÍÁÎÄ ÔÈÁÔ ÉÓ ÅØÅÃÕÔÅÄ ÏÎÃÅȟ 

it rather describes a hardware path which will exist in the FPGA and the dataflow. 

Behavioral logic requires a code structure called a processȢ )ÔȭÓ Á ÓÔÒÕÃÔÕÒÅ ×ÈÉÃÈ 

helps encapsulating several assignments under complex conditions and introducing 

helper local variables. Similarly to an assignment, logic included in several processes 

ÉÓ ÐÅÒÆÏÒÍÅÄ ÉÎ ÐÁÒÁÌÌÅÌ ÁÎÄ ÄÅÓÃÒÉÂÅÓ ÒÅÌÁÔÉÏÎÓȟ ÓÏ ÉÔȭÓ ÎÏÔ ÅØÅÃÕÔÅÄ ÏÎÃÅȢ 

Each statement describing logic of an entity, whether it is an assignment or a process 

is working in parallel in respect to other statements in the entire project. Such logic 

is a stateless automata. In order to implement advanced processing algorithms, 

there is a need to introduce Moore or Mealy Finite State Machine (abbr. FSM) 

mechanism. In a single FPGA device the logic can be a mix of 

synchronous/asynchronous parts and direct or controlled by FSM logic. Finite State 

Machines are essential elements of controlling the dataflow and the processing 

procedures (Figure 10). They define a set of states in which the logic can operate. In 

each state the logic is realizing a specified task. It is a way of dividing and sequencing 

the whole procedure into a number of steps that need to be taken. Each state has 

well defined transitions to other states. Starting from the first state, the transition 

conditions are checked at each clock cycle.  If any condition is proven positive, the 

actual state is changed, otherwise the actual state remains the same and the 

procedure continues to perform the task described by it. VHDL provides conditional 

statements like if or case. Those statements are translated by the compiler into 

series of comparators and multiplexers configured and connected in CLBs. The 

nature of FPGA devices allow to instantiate a number of FSMs inside a single design, 

all of them will run in parallel, steering the work of some parts of the logic. This 

aspect can be visualized by the example of the design of a network switch. Each 

network link should be handled by the logic independently. Hence in the design, a 

module for controlling a link, having an FSM which defines the states of link, can be 

instantiated as many times as there are links. All instances will run in parallel 

allowing the processing of data on all the links at the same time. 
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There are a lot of ready to use components, developed by the FPGA manufacturers, 

third party companies and open source community, which can be instantiated in a 

design. Intellectual Property Cores (abbr. IP Cores) are building blocks from which 

an entire design can be built with addition of user logic. All FPGA hardware elements 

like memory or DSP blocks, gigabit transceivers etc. are accessible to the developer 

via instantiation of appropriate core. Most standard functions can be found as IP 

Cores, especially when it comes to communication protocols. FPGAs need external 

ÄÅÖÉÃÅÓ ÉÎ ÏÒÄÅÒ ÔÏ ÒÅÃÅÉÖÅ ÄÁÔÁ ÔÏ ÐÒÏÃÅÓÓ ÏÒ ÔÏ ÔÒÁÎÓÆÅÒ ÒÅÓÕÌÔÓ ÏÕÔȢ 4ÈÁÔȭÓ ×ÈÙ ÔÈÅ 

knowledge of modern data transmission standards and protocols is required in 

order to build an operational design. 

3.3  $ÅÓÉÇÎ &ÌÏ× ÁÎÄ -ÅÔÈÏÄÏÌÏÇÙ 

Developing FPGA logic is a different process than writing high level procedures that 

are executed sequentially on a CPU. The fact that the written code is translated not 

into a sequence of low level assembler commands but into a representation of basic 

electronic components included in an FPGA, requires a totally different approach. 

The developer needs to know the internal structure of the device for which the logic 

is being written as well as how the compiler will translate the code into 

Initial state

is the setup ready?

PERFORM TASK 1

YES

Is task1 finished?

NO

PERFORM TASK 2

YES

Problem solved?

YES

NO

Final state

NO

 

Figure 10: Example of a state machine composed of 4 states including initial and final 

states. The transitions between states happen in case defined conditions are met. 
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configuration of Slices in logic blocks. The compilation is a very sophisticated set of 

processes, executed one by one in order to create a final bit file containing 

configuration of each CLB in a target FPGA device. 

 

Efficient FPGA design process flow presented on Figure 11, requires several steps to 

be performed before configuring the device. The entire code in a design contains 

parts which are platform independent and parts which are strongly tied with an 

actual target FPGA modeÌȢ 4ÈÁÔȭÓ ×ÈÙȟ ÁÓ ÔÈÅ ÓÔÁÒÔÉÎÇ ÐÏÉÎÔȟ ÔÈÅ ÄÅÖÅÌÏÐÅÒ ÎÅÅÄÓ ÔÏ 

get to know the exact FPGA structure as well as all the external devices mounted on 

the PCB which will be used in the design. Knowing these details, one can define the 

interface of top entity that is mapped into FPGA pins connected to peripherals. The 

mapping is realized by including a constraints file, which pairs the port of the 

interface with a pin of the FPGA.  

The code in the source files needs to be compiled into representation of basic logic 

components like gates, multiplexers, adders etc. This process is called synthesis and 

is independent from the target device. The result of synthesis is a netlist which can 

be displayed graphically as a schematic of the translated logic. Compiling the code 

into a netlist is a straight forward procedure of converting VHDL statements into 

logic functions and connecting registers. This process introduces different levels of 

optimization in order to remove redundant or unused parts of the logic. At first all 

the registers which outputs are not connected in the netlist are being removed. 

Second step is the minimization and simplification of generated logic functions, a 

process similar to Karnaugh method (21). The last step is the merging of redundant 

logic parts. 

 

Figure 11: Detailed design flow. Firmware development requires multiple iterations of 

the cycle consisting of several levels of compilations (left column) and verification of 

the results using different tools (right column).  [xilinx.com] 
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The generated netlist (example presented on Figure 12) is a starting point for 

further compilation steps but also for the first stage of debugging. The correct design 

flow suggests running behavioral simulation prior to implementing design. 

Behavioral simulation helps finding bugs in the logic functions and verify if the 

translation done by the synthesizer is correct. Simulation (sample output presented 

on Figure 13) can be run for selected component only or for the top entity, which 

means the whole logic in the design will be processed. As the VHDL components 

describe the manipulation of input signals, the simulation needs some kind of 

description, how those input signals work. Such description is called a stimulus 

vector and is included in a testbench. It is also a VHDL component, which has an 

instance of a component under test and some processes that describe each input 

port of that component. In a testbench, one can use VHDL statements, which are not 

synthesizable by the compilation process. Those commands are useful in 

description of the signal in function of time. Commands like wait for [time unit]  will 

be compiled by the simulation tool as a pause between executing the next statement. 

The use of wait  commands changes the standard VHDL process into a set of 

commands executed sequentially. What is important to mention is that the 

testbench process will be only executed by the simulation tool, hence on the 

standard CPU. The operating system running on a CPU has the means of measuring 

ÔÉÍÅȟ ÔÈÁÔȭÓ ×ÈÙ ÔÈÅ ×ÁÉÔ ÓÔÁÔÅÍÅÎÔÓ ÁÒÅ ÐÏÓÓÉÂÌÅ ÔÏ ÕÓÅȢ 4ÈÅÒÅ ÉÓ ÎÏ ÓÕÃÈ ÆÅÁÔÕÒÅÓ 

while implementing a design on an FPGA, which is the reason why such statements 

are not synthesizable. The simulation will feed the described input signals to the 

component under test ports and calculate its response during a specified period of 

time. The calculation occurs with a time step (usually 1 ps), evaluating the state of 

all components, logic gates, flip flops etc. included in the design. In order to verify 

the behavior of the component during 1 ns, simulation tool will recalculate the state 

of all elements 1000 times, which is a large computational effort. The key to a 

successful simulation is the preparation of stimulus vector. In order to find potential 

 

Figure 12: Netlist of a counter running on input clock CLK and presenting the output 

on LEDs, the code has been synthesized into an adder module and a flip flop with 

feedback connection. 
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bugs, a well-designed vector should contain some randomized parts, which would 

cover all the possible states of input ports. Only when the response of the component 

under test is correct for all those states, the component can be qualified for further 

implementation steps. 

 

When the results of simulation prove the correctness of designed logic, the 

developer can proceed with design implementation. Because the implementation is 

a process of fitting and placing the netlist in an FPGA, this process is strongly 

dependent on the target device. That means that the result can be used only on a 

device type specified in the project settings. First step is the translation, which 

converts the netlist generated by synthesis into set of elements included in the 

actual device. This stage is needed as the synthesis, being platform independent 

process, can be realized by software from different providers, while implementation 

software can only be provided by the manufacturer of the FPGA. When the translator 

converts the general netlist into a set of components available in a target device, the 

processes that will place those elements around the chip are mapper and place and 

route (abbr. PAR). At first the mapper is recognizing all the components included in 

the design as hardware elements in the FPGA and tries to locate them. The placing 

can be forced by the developer using statements in the constraint file, which locks 

components to specified location in the FPGA array. Not specified elements are 

distributed all over the device by some placing algorithm. The algorithm tries to 

create the shortest paths possible between all the configured CLBs. Once placed, 

logic is then process by PAR. Its task is to adjust the placement of components in 

such a way that all timing constraints are met. The timing constraints are essential 

in order to properly communicate with external peripherals (typical situation 

presented on Figure 14). The user defines the frequency of the clocks used in the 

design as well as setup and hold times of certain signals. The delays introduced by 

the routing of elements inside the FPGA can violate the timing specifications of 

protocols used between the chip and the peripherals. Those specifications need to 

be well defined by the developer in the constraint file, then the PAR algorithm can 

place the logic in such a way that the calculated delays are within some declared 

 

Figure 13: Example of 80ns simulation output result. Stimulus vector describes the 

clock ticks on the input port, for each tick an internal signal is incremented and its 

value is presented on the output port. 
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margins. The operation of PAR algorithm can be adjusted in terms of area covered 

by the logic or most timing efficient placement.  

 

The output of the entire implementation process is a detailed description of each 

CLB and any other hardware component configuration in the target FPGA structure. 

Successful PAR run assures there are no violations of timing on essential data paths 

and all the design components are placed in valid locations. The verification of 

timing aspects of the design can be done by checking the generated reports 

describing the longest paths and potential problematic connections. This 

information can also be used for timing simulation. The simulation performed after 

synthesis does not take into account any timing issues of the design (assumes zero 

delays), it works only on Register Transfer Level (abbr. RTL) level, which is useful 

for validating correctness of logic functions. Timing simulation process, extends the 

behavioral simulation by adding all the calculated during PAR timing information.  

Iterations between simulation and implementation processes are needed in order 

to achieve timing closure of the design. Once the logic is verified and correctly 

implemented, one can generate a bit file, which is a binary file containing 

configurations for each element in target FPGA. It is a translation of PAR results into 

binary format. A bit file can be then loaded into an FPGA. Once the device is 

programmed, the developer has to verify by his means if the wanted functionality is 

properly executed. Last years, major FPGA manufacturers developed a system of in-

circuit verification, which allows to check the operation of the logic running on a 

programmed FPGA device. The integrated logic analyzer can be used to display the 

selected internal signals in a function of time, triggered by some defined condition 

or manually at any time. This is the last step in debugging the design. In case a wrong 

way of operation was found which needs a change in the logic, the entire design flow 

 

Figure 14: Visualization of timing requirements for output signals. Valid data offsets 

in respect of clock signal provided to an external device has to be constrained for 

proper operaton of PAR algorithm and production of design with secured timing. 

[xilinx.com] 
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cycle has to be repeated from the first step. As the place and route algorithms are 

not deterministic, often guided by pseudo random number generators, each run and 

more importantly each change in the entry point of the design can result in 

ÕÎÐÒÅÄÉÃÔÁÂÌÅ ÉÍÐÌÅÍÅÎÔÁÔÉÏÎ ÒÅÓÕÌÔÓȢ 4ÈÁÔȭÓ ×ÈÙ ÉÔ ÉÓ ÓÏ ÉÍÐÏÒÔÁÎÔ ÔÏ ÐÒÏÐÅÒÌÙ 

constrain the design and verify each step of the procedure with the simulations and 

reports lecture. 

3.4  #ÏÍÐÁÒÉÓÏÎ ÔÏ #05Ó ÁÎÄ '05Ó 

High-performance computing is a fast evolving branch of hardware development 

imposed by demands coming from various markets like science, banking, consumer 

electronics etc. Technology and physics limitations reached in transistor 

ÍÉÎÉÁÔÕÒÉÚÁÔÉÏÎ ÉÎ ÐÒÏÄÕÃÔÉÏÎ ÐÒÏÃÅÓÓȟ ÆÏÒÃÅÄ ÔÈÅ ÑÕÅÓÔÉÏÎÉÎÇ ÉÆ ÔÈÅ -ÏÏÒÅȭÓ ÌÁ× 

(22) is still applicable. While single cored CPUs reached their peak performance 

achieved through core complexity and clocking frequency, products combining 

multiple cores in a single chip emerged. Multicore approach introduced new 

possibilities in data processing but also new software and firmware constructs that 

could efficiently make use of such architectures. In response to specific demands, 

three main families of specialized computing units are now existing on the market. 

Multicore CPUs are general purpose processing devices, with several complex cores. 

GPUs feature few orders of magnitude more cores, which are optimized for complex 

ÁÒÉÔÈÍÅÔÉÃ ÏÐÅÒÁÔÉÏÎÓȢ  0,$Ó ÁÒÅ ȰÅÍÐÔÙȱ ÄÅÖÉÃÅÓȟ ×ÈÉÃÈ ÁÌÌÏ× ÔÈÅ ÄÅÖÅÌÏÐÅÒ ÔÏ 

design its internal architecture according to specific requirement.  

3.4.1  Architecture 

Multicore CPUs (Figure 15) are encapsulating several processors in one chip 

together with additional memory and controlling mechanisms. In consumer 

products it is often to find an additional graphic processor. A single core is an 

independent processing unit with its own scheduler, registers, Arithmetic and 

Logical Unit (abbr. ALU) and cache. The communication and synchronization 

between cores is achieved by shared memory and the CPU controller. Each core is 

sequentially processing instructions from Complex or Reduced Instruction Set 

(abbr. CISC and RISC) defined by the chip producer. The bottleneck of fast clocked 

ÃÏÒÅÓ ÉÓ ÔÈÅ ÍÅÍÏÒÙ ÁÃÃÅÓÓȢ 4ÈÁÔȭÓ ×ÈÙ ÔÈÅ ÄÅÐÅÎÄÅÎÃÅÓ ÂÅÔ×ÅÅÎ ÔÈÒÅÁÄÓ ÒÕÎ ÉÎ 

parallel on separate cores should be minimized in order to achieve maximum 

computing efficiency. 
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Different architecture is presented by GPUs (Figure 16). High number of smaller, 

specialized cores is targeted to perform similar operations multiple times. Single 

Instruction Multiple Data (abbr. SIMD) approach is based on delivering different 

data to a set of threads, each one executing same kind of instructions. In case of 

GPUs, a single core consists of many ALU units, equipped with local cache. Those 

ALU units are grouped into so called warps, and they work on single instruction with 

separate data sets. It is an advantage for processing fine grained independent 

problems. In order to assure best performance of computation, the amount of 

operations distributed for each thread in a single warp should be even, which is a 

programmatic challenge. The software is divided into parts performed by GPUs and 

a part executed on CPU, which prepares and delivers data to the GPU platform. 

Programmable Logic Devices (Figure 17), as described at the beginning of this 

chapter, are left for the developer to design their internal architecture. Large arrays 

of configurable components, together with additional hardware infrastructure can 

be configured to perform specified tasks. The amount of resources available in 

current devices, allows parallelized and pipelined data processing in real time. Lack 

of predefined architecture and set of instructions allows to design highly optimized 

solutions. Low level, basic, bit-wise operations provided by logic blocks are 

inefficient for floating point operations, which is the limiting factor in use cases of 

PLDs in computing. 

 

 

Figure 15: Internal die architecture of Intel Core i5 3570K processor. There are four 

visible cores, a separated graphic processor unit, cache memory shared between all 

components and various IO controllers. [intel.com] 
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Fundamental differences in the architecture of those three types of computing 

devices categorize them for being applicable for specific kind of tasks. Multicore 

CPUs are efficient for solving complex problems which can be divided into few 

functional threads with mixed instruction sequences. The GPUs best perform 

calculating very high number of same operations with different datasets on each 

thread. The structure of PLDs offers unique performance for real time applications 

and online, parallel data processing with limited arithmetic operation set.  

 

Figure 16: Internal die architecture of Nvidia GeForce GTX 280 graphic processor unit. 

There are four visible arrays of processor cores as well as buffers and memory 

components. [Nvidia.com] 

 

 

Figure 17: Internal structure of Altera Stratix FPGA. Most of the device is occupied by 

array of Slices. Additional resources like RAM blocks, DSP blocks are distributed around 

the device while the high speed transceivers are located at the edges. [altera.com] 
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3.4.2 Example Application - Random Number Generator 

In depth performance comparison was studied in many available publications. 

Important aspect is the selection of an algorithm that is possible to be implemented 

on all kind of devices. In High Energy Physics, Monte Carlo simulations are the basic 

tool for preparation for experiments. Those simulations are well parallelizable 

problems which are strongly based on Random Number Generators (abbr. RNG). 

The quality of those generators affects the simulation results. The publication (23) 

is covering different RNG algorithms and their implementations on CPUs, GPUs and 

FPGAs. Several algorithms for uniform, Gaussian and exponential generators were 

implemented and compared in terms of performance, which is number of samples 

delivered per second using all resources possible on selected devices. FPGA 

architecture presents an advantage of performing bit-wise operations 

simultaneously on all Slices available. This feature is especially useful for uniform 

algorithms where no high level arithmetic operations are required, hence the entire 

logic can be implemented on Slices structure. For other algorithms, the limiting 

factor is the need of DSP and RAM blocks, which amount is limited and data access 

introduces additional latency. Implementations on GPUs require wise selection of 

algorithm in order to take advantage of SIMD and warp thread structure. To 

efficiently distribute the work over the available threads, it is important to take care 

of equalizing algorithm paths in such a way that the amount of warp threads waiting 

for the slowest one is minimized. CPUs take advantage of well defined, developed 

over long period of time and verified algorithms, which are executed on devices that 

are being run at very high clock frequencies. The very low number of parallel 

threads in comparison to other platforms, definitively makes them the slowest 

solution. It is important to notice, that in those tests the time needed for data 

transfer and the communication latency are not taken into account, just the raw 

number of generated numbers per second.  

 

 

 

Figure 18: Comparison of peak performance of random number generators on different 

platforms. (23) 
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The table above (Figure 18) shows that the FPGA implementations outperformed 

the other platforms, especially in case of uniform distribution. Similar performance 

to GPU is only in case of Gaussian random generator. GPU implementations present 

an order of magnitude faster sample delivery than an ordinary CPU. Also in terms of 

power consumption, the FPGA devices are the most efficient solution. The platforms 

used for the purpose of this measurement were: CPU ɀ Intel Core2 QX9650, GPU ɀ 

NVidia GTX 280 and FPGA ɀ Xilinx xc5vlx330.  
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The subject of this thesis is the entire concept of the trigger and data acquisition 

system based on universal readout boards Trigger Readout Board v2 (abbr. TRB2) 

and its successor Trigger Readout Board v3 (abbr. TRB3). Both solutions were 

developed in cooperation of many institutions, with key developers from GSI 

Helmholtzzentrum Darmstadt and Jagiellonian Univeristy in Cracow. The 

architecture of the TRB boards and details of their  construction are given in Sections 

4.3 and 4.4. 

The main motivation was to design a platform consisting of hardware, firmware and 

software out of which readout systems of various scale requesting distributed data 

processing could be constructed. Thus, the key features of the TRB platform are: 

scalability, extensibility , flexibility  and reconfiguration. Those points were achieved 

by the design of a system based on interconnected in a tree architecture, identical 

base modules with extension cards (Add-on boards) for various measurements (for 

example ADC). Such modules provide vital functionality like signal digitization with 

feature extraction, data transmission, control mechanisms and hub features, which 

allow to introduce further modules and expand the system. However one should 

keep in mind that extension should preserve the performance characteristics, while 

the number of modules increases. The additional modules are needed in order to 
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introduce a higher number of input channels, a new type of measurement or data 

processing that is not provided by the base module. Such approach led to creation 

of a fully universal platform for a broad range of measurement systems, which is 

reflected by the amount of various users and high demand for this solution. 

Detailed description of the system is presented in the next sections. By showcasing 

its architecture and main components, the concept of TRB platform is introduced. 

Both, the hardware and firmware are described with a strong emphasis on 

communication features, which were implemented by the author of this thesis and 

are of key importance for the system architecture. The in-depth analysis of the 

system performance can be found in Chapter 6, where two setups are evaluated. 

4.1 3ÙÓÔÅÍ !ÒÃÈÉÔÅÃÔÕÒÅ 

The system is composed out of two main logical elements: endpoints and hubs. They 

both can exist as hardware components or as firmware modules. The endpoints are 

the elements in the system that perform signal digitization and some kind of 

processing, which results in generated data. Each endpoint has to be connected to 

one port of the hub, through which it can receive readout requests and control 

commands from the central controller. Through the hub connection, the endpoint 

can also transmit its data portion. Each module connected to a hub acts as an 

endpoint to that hub. Such approach masks the complexity of the system and returns 

it as a really scalable platform. One can always connect a new hub to an existing and 

therefore, open several additional slots for new endpoints (which, in turn could also 

be hubs etc.).  
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Figure 19: A schematic view at the tree architecture of the system. The central hub is a 

root of the tree and branches consisting of another layers of hubs and endpoints are 

derived. The central controller and control modules communicate with the rest of the 

system through the central hub. The data flow directions are marked by the arrows: 

messages sent from the central point to the endpoints flow downstream, while responses 

from the endpoints flow upstream. 
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The elements of the systems are composed in a tree hierarchical architecture 

(Figure 19). There is one root module which is the central hub. From this point 

several branches can be driven, each consisting of hubs and endpoints, which are 

leafs. The central hub distributes the readout requests coming from the central 

controller  and control messages from the control module. Those messages flow in 

downstream direction, from the source to the endpoints. The responses generated 

by the endpoints flow in upstream direction. As the endpoints are treated as 

independent from each other, there is no communication channel between them in 

a horizontal direction. The hubs can distribute messages from its root to its 

endpoints or collect messages from the endpoints and forward them to the root. 

Such architecture is required in order to perform synchronized measurements. 

While each endpoint is processing data independently from the others, a readout 

request from the central controller forces all the endpoints to tag the data with the 

current, centrally generated readout number marker (trigger tag) and transmit the 

data out of the system. Data fragments tagged with the same number can be then 

combined into structures representing the state of the processing in the whole 

system in a precise moment of time.  

The TRB platform provides a base module, which can act as a hub and/or as an 

endpoint. Depending on the loaded firmware, the board can realize all the above 

described functions: contain endpoint modules that provide data, an instance of the 

hub, a control and a central controller modules. It means that the smallest system 

can be built out of a single board, which is convenient for small setups. This high 

flexibility in the usage of the base module could be possible thanks the FPGA devices. 

While the hardware remains the same and provides the infrastructure, the exact 

function of a board is defined by the loaded firmware.  

The base module also provides a support for Add-on boards, which can extend its 

measurement and processing functionality. Those extension boards require only the 

connection to the hub instance in the base module in order to become an endpoint 

of the system. This concept results in a highly extensible system. The development 

of new elements, compatible with the system requires only the implementation of a 

proper endpoint interface. 

It is worth to remind that the terms endpoint and hub exist as both: dedicated 

hardware modules and also as firmware components. This allows for development 

of structured firmware with well -defined functionality distribution and common 

interfaces. It applies also to the protocol used for inter-electronics data exchange as 

well as for the inter-components communication in the firmware.  

Data processing can be executed on each layer of tree structure. The endpoints are 

data sources, with some logic resources for basic feature extraction and which can 

transmit the collected data only in the upstream direction. They are also equipped 

with readout buffers which can store data until  arrival of the of the readout request. 
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The data path can go through the layers of hubs or alternatively exit the system at 

any point that features external network gateway. Hubs closer to the root of the 

system deal with larger subsets of data, collected from underlying layers.  It is both: 

an advantage because more complex algorithms can be executed there but also 

possible bottlenecks can occur, which have to be addressed by the proper system 

configuration, because increasing data subsets can emerge. The algorithms that 

introduce some additional latency to the real time data path increase the dead time 

of the system. The base modules are equipped with gateways to the external 

network, through which the collected data can exit the system. Therefore, the 

systems has to be properly designed for each application, depending on the imposed 

processing requirements.  

 

An example of TRB platform application (Figure 20) is a data acquisition for a 

general DAQ system consisting of N detectors. The system can consist of various 

detector types that need to be simultaneously digitized and the results need to be 

stored in output buffers. The signals coming from different detectors require 

different handling, therefore the system has to feature various endpoints providing 

the requested measurement and processing capabilities. The concept of Add-on 

modules in TRB platform realizes this point. The core of the system remains 
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Figure 20: Schematic view of the system architecture applied for detector readout. 

Signals from different detectors are connected to the appropriate front-end 

electronics, which outputs are digitized and processed by the endpoints. Inter-TRB 

communication shares three logic channels: data readout (purple), slow control 

(orange) and trigger distribution (red). The blue elements combine detector specific 

hardware, while the green modules are common platforms. The violet arrows show the 

gateways for external networks. 
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the same, while only the Add-on modules need to be developed or adapted for 

specific applications. 

The process of collecting data from detectors is controlled by the central controller 

of the system, connected to the central hub. The endpoints digitize and process the 

data in the real time according to their local algorithms and store the data in readout 

buffers. At some point, the central controlled issues a readout request command, 

which is distributed through all the hubs in the system to the endpoints, directing 

them to forward buffered data to the external network gateways. After sending this 

request, the system enters busy state. It is the time when no further readout 

requests can be issued, until all the endpoints report their readiness, which usually 

happens after freeing up the buffers. During this period of time, the system is not 

capable of recording new events. Proper implementation of buffering mechanism 

can reduce the dead time, but it is not possible to avoid it completely. The time since 

issuing the readout request and receiving all the busy release messages is the dead 

ÔÉÍÅ ÏÆ ÔÈÅ ÓÙÓÔÅÍȟ ÔÈÁÔȭÓ ×ÈÙ ÉÔ ÉÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ËÅÅÐ ÉÔ ÁÓ ÌÏ× ÁÓ ÐÏÓÓÉÂÌÅȢ  

4.2 #ÏÍÍÕÎÉÃÁÔÉÏÎ 0ÒÏÔÏÃÏÌÓ 

A crucial part of the presented architecture are the communication protocols which 

were applied to provide data transmission capabilities between the system 

components (Figure 21). Two main functionalities were distinguished and 

appropriate protocols were implemented basing on specific requirements and 

available resources. The first protocol is used for controlling the readout process by 

distributing the readout request messages and control commands. It requires the 

lowest latency possible, needs to be implemented between the system components 

and does not require advanced routing mechanisms. The original TrbNet (24) was 

invented and developed as a system specific protocol fulfilling the above 

requirements. Different requirements are imposed by the handling of the data 

gathered by the endpoints. This data has to exit the system at some point and be 

delivered to the servers for further, offline analysis. As they are PC class computers, 

a natural choice was to use a well-established standard like Gigabit Ethernet. 

4.2.1 TrbNet 

Indispensable element of the TRB platform is the TrbNet protocol (25). A dedicated 

network protocol, developed especially for TRB platform is used for three main 

purposes: distribution of readout requests, readout data transport and exchanges of 

the slow control messages. The protocol is independent from media interface, which 

means it can run on lines between devices on a PCB, optical fibers, copper cables and 

any other communication media. It requires two lines per connection as it can run 

only in full duplex mode needed by the handshake mechanism.  
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One link is shared over all three functionalities. It means that one physical link 

contains three logical channels: one for trigger, one for data and one for slow control. 

It is very important that the protocol assures lowest latency possible on readout 

request distribution channel, which is crucial for proper synchronization and 

operation of the system. It is realized by prioritizing the types of messages. Readout 

requests has the highest priority, then comes the data readout and slow control at 

the end which is the least timing dependent channel.  

Transmission is realized in a form of fixed-length, 80 bit  packets of different types 

like header, data, end of block, termination and acknowledge. Each transmission 

consists of exchanging at minimum one header, one data and one termination 

packet. If there is much more data to transmit, it can be divided into several blocks 

and then end of block packet is used in order to separate them. In order to keep the 

latency low, it is important to avoid large data transfers and divide large portions of 

data into several parts. In such way, the packets containing readout requests can be 

injected in the middle of the ongoing transmission. After each block, the receiver 

sends an acknowledgment packet in order to assure the reliability of the connection. 

Packets contain a calculated CRC which is checked by the receiver. Depending on 

situation the packet can be marked as containing error or retransmission is 

requested. Such mechanism is especially needed in highly radiated locations, which 

can lead to Single Event Upset (abbr. SEU). Those can often happen, when the 

TrbNet

GbE

 

Figure 21: Schematic view of the networking in the DAQ system. The TRB boards 

communicate with each other through optical connections running TrbNet protocol 

(blue). The readout of the collected data, as well as slow control from PCs is performed 

on Gigabit Ethernet links (orange). Some Add-on boards are capable of transmitting 

GbE directly. The Gigabit Ethernet connections from the electronics, enter the 

infrastructure, composed of network switches, which distributes readout data to the 

event builders and then to permanent storage as well as assures the slow control 

interface. 



47 

 

electronics are mounted close to the detectors and can even lead to complete de-

synchronization of the link. 

Each physical TrbNet channel is composed of several elements, symmetric for the 

receiver and the transceiver. Media interface is the lowest, physical layer. It 

implements the link access, low level data encoding like 8b/10b and the mechanism 

ÏÆ ÂÉÔ ÔÒÁÎÓÐÏÒÔ ÁÎÄ ÒÅÃÅÐÔÉÏÎ ÏÖÅÒ ÔÈÅ ÌÉÎËȢ )ÔȭÓ Á ÃÏÍÐÏÓÉÔÉÏÎ ÏÆ ÈÁÒÄ×ÁÒÅ 

transceiver and firmware that controls it. The next element, which is included in 

each TrbNet node is the endpoint. The firmware that handles and decodes the data 

is static and common to all implementations. The data received on the media 

interface is passed to the multiplexer which recognizes the type of the incoming 

packet and redirects it to the appropriate I/O buffer. There are three I/O buffers, 

ÏÎÅ ÆÏÒ ÅÁÃÈ ÌÏÇÉÃÁÌ ÃÈÁÎÎÅÌȢ 7ÈÁÔȭÓ ÉÍÐÏÒÔÁÎÔ ÔÏ ÎÏÔÉÃÅ ÉÓ ÔÈÁÔ ÔÈÅ ÂÕÆÆÅÒÓ ÁÒÅ 

located after the multiplexer. This is requested in order to assure the lowest latency 

and bottleneckɀfree way of readout request packets delivery. After each buffer, 

there is a handler designated for specific type of packet, which decodes the payload 

and delivers the data on the output interface for the user to process it further. The 

mechanism for transmission works in the exactly same way and the data passes 

through all those elements in the reversed order. 

4.2.2 Gigabit Ethernet 

While TrbNet is a reliable and fast protocol, its drawback is that it can only be 

implemented on custom electronics and that it features functionality which is not 

needed for the basic data transmission. That is why Gigabit Ethernet (15) has been 

chosen as the protocol used for transmitting the collected data out of the system. It 

is a well-established on the market standard in modern telecommunication systems. 

The hardware needed for constructing a network is cheap, easy to access and 

standard PCs are usually equipped with needed Network Interface Cards (abbr. 

NICs) together with well -verified drivers and software, supported by the large 

manufacturers. 

The network environment of the DAQ (Figure 4) systems in most of the applications 

can be treated as Local Area Network (abbr. LAN). It is characterized by the fact that 

those systems consists of many interconnected devices, exchanging large amount of 

data between each other, with limited communication outside defined sub-

networks and located in a specified area. They are a mix of passive nodes, that only 

transmits gathered data out to a defined destination, and nodes that require 

communication in both directions as well as a mix of custom electronics and 

standard, market-available devices. Those are the reasons of choosing the TCP/IP 

protocol suite as a set of protocols running over Gigabit Ethernet networks. For the 

Transport Layer, two most common protocols are used: TCP and UDP. Depending 

on the setup and needed functionality, those two are complemented by a set of 

network discovery and other helper protocols. 
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In the described TRB platform, the TrbNet protocol is used only for inter-electronics 

communication. When it comes to transmitting data out of the system, the Gigabit 

Ethernet is introduced at all the hardware modules equipped with appropriate 

devices. It is important to enable the data exit the system at any point in order 

reduce bottlenecks and to keep the TrbNet links available for readout requests and 

control messages. In case it is not possible, that readout data is passed via TrbNet to 

the first module that has a gateway to GbE network.  

The GbE gateways gather data coming from connected endpoints and compose UDP 

packets that are transmitted to the offline analysis servers. Although the protocol is 

not reliable and does not guarantees the delivery of uncorrupted data it is much 

more suitable for implementation as FPGA logic and features lower overhead due to 

reduced headers set than TCP. Some sort of reliability can be restored by a proper 

design of the network infrastructure, which has been proven to be sufficient, even 

for large scale setups. 

The Gigabit Ethernet Module is described in detail in Section 4.5. 

4.3 3ÙÓÔÅÍ #ÏÍÐÏÎÅÎÔÓ 

The entire system is composed of many modules, specialized to perform a given task 

or type of measurement. The main element is the TRB board which acts as a support 

for the extension modules and provides basic functionalityȢ ,ÅÔȭÓ ÆÉÒÓÔ ÔÁËÅ Á ÃÌÏÓÅÒ 

look at TRB2 (Figure 22) (26), which is still widely used in many setups. 

 

 

 

Figure 22: Schematic view of the TRB2 platform. Two main processing elements are 

the Virtex4 FPGA and the EtraxFS processor. The first one is connected to all the 

peripherals, including HPTDCs, while the Etrax assures the Ethernet gateway to the 

system network (26). 

 




































































































































